KC Sinha Mathematics Solution Class 10 Chapter 4 द्विघात समीकरण ( Quadratic) Exercise 4.4


























Question 51 

If a cos θ – b sinθ = x and a sinθ + b cosθ = y that a2 + b2 = x2 + y2.
Sol :
Taking RHS =x2 + y2
Putting the values of x and y, we get
(a cos θ – b sin θ)2 + (a sin θ + b cos θ)2
= a2cos2θ + b2 sin2θ – 2ab cos θ sin θ + a2sin2θ + b2 cos2θ + 2ab cos θ sin θ
= a2 (cos2 θ + sin2 θ) + b2 (cos2 θ + sin2 θ)
= a2 + b2 [∵ cos2 θ + sin2 θ = 1]
=RHS
Hence Proved

Question 52 

If x = a sec θ + b tan θ a and y = a tan θ + b sec θ, then prove that x2 – y2 = a2 – b2.
Sol :
Taking LHS =x2 – y2
Putting the values of x and y, we get
(a sec θ + b tan θ)2 – (a tan θ + b sec θ)2
= a2 sec2θ + b2 tan2θ + 2ab sec θ tan θ – a2tan2θ – b2 sec2θ – 2ab sec θ tan θ
= a2 (sec2θ – tan2θ) – b2 (sec2θ – tan2θ)
= a2 – b2 [∵ 1+ tan2 θ = sec2 θ]
=RHS
Hence Proved

Question 53 

If (a2 – b2) sin θ + 2ab cosθ = a2 + b2, then prove that .
Sol :
Taking (a2 – b2) sin θ + 2ab cos θ = a2 + b2
We know that 
Then, substituting the above values in the given equation, we get

Now, substituting, , we hwve

⇒ ( a2 – b2)2t – 2ab(1 – t2) = (a2 + b2)(1+t2)
Simplify, we get
(a2 + 2ab + b2)t2 – 2(a2 – b2)t + (a2 –2ab +b2)=0
⇒ (a+b)2 t2 – 2(a2 – b2)t + (a – b)2 = 0
⇒ (a+b)2 t2 –2 (a – b)(a+b)t + (a – b)2 =0
⇒ [(a+b)t – (a – b)]2 = 0 [∵ (a – b)2 = (a2 + b2 – 2ab)]
⇒ [(a+b)t – (a – b)] = 0
⇒ (a+b)t = (a – b)


We know that, 



Hence Proved

1 comment:

Contact Form

Name

Email *

Message *