Exercise 3.3
Question 1
निम्नलिखित समीकरण निकाय को विलोपन विधि से हल करे:
(i) 3x-5y-4=0
9x=2y+7Sol :
3x-5y-4=0..(i)×3
9x-2y=7..(ii)×1
समीकरण (i) मे '3' से तथा समीकरण (ii) मे '1' से गुणा करने पर
$\begin{aligned}9x-15y&=12\\9x-2y&=7\\ -\phantom{9x}+\phantom{2y}&=-\phantom{7}\\ \hline -13y&=5\end{aligned}$
$y=\frac{-5}{13}$
y का मान समीकरण (i) मे रखने पर
3x-5y=4
$3x-5\left(\frac{-5}{13}\right)=4$
$3x+\frac{25}{13}=4$
$3x=4-\frac{25}{13}$
$3x=\frac{52-25}{13}$
$3 x=\frac{27}{13}$
$x=\frac{27}{13 \times {3}}=\frac{9}{13}$
$\therefore x=\frac{9}{13}, y=\frac{-5}{13}$
(ii) 3x+4y=10
2x–2y=2Sol :
3x+4y=10..(i)×1
2x-2y=2..(ii)×2
समीकरण (i) मे '1' से तथा समीकरण (ii) मे '2' से गुणा करने पर
$\begin{aligned}3 x+4 y&=10\\4 x-4 y&=4\\ \hline 7x=&14\end{aligned}$
$x=\frac{14}{7}$
=2
x का मान समीकरण (i) मे रखने पर
3x+4y=10
3(2)+4y=10
6+4y=10
4y=4
$y=\frac{4}{4}$
y=1
∴x=2, y=1
(vii) 0.4x – 1.5y = 6.5
0.3x + 0.2y = 0.9
0.3x + 0.2y = 0.9
Sol :
दोनो समीकरण मे 10 से गुणा करने पर,
4x-15y=65..(i)×3
3x+2y=9..(ii)×4
समीकरण (ii) मे '3' से तथा समीकरण (ii) मे '4' से गुणा करने पर,
$\begin{aligned}12 x-45 y&=195\\ 12x+8y&=36\\ -\phantom{12x}-\phantom{8y}&=-\phantom{36}\\ \hline -53&=159\end{aligned}$
$y=\frac{159}{-5}$
y=-3
y का मान समीकरण (i) मे रखने पर,
4x-15y=65
4x-15(-3)=65
4x+45=65
4x=20
$x=\frac{20}{4}$
x=5
∴x=5 ,y=-3
(viii) √2x-√3y=0
√5x+√2y=0
Sol :
√2x-√3y=0..(i)×√2
√5x+√2y=0..(ii)×√3
समीकरण (i) मे '√2' से तथा समीकरण (ii) मे '√3' से गुणा करने पर,
$\begin{aligned}2 x-\sqrt{6} y&=0\\\sqrt{15 x}+\sqrt{6} y&=0 \\ \hline 2x+\sqrt{15}x&=0\end{aligned}$
$(2+\sqrt{1} 5) x=0$
x=0
x का मान समीकरण (ii) मे रखने पर,
$\sqrt{5} x+\sqrt{2} y=0$
$\sqrt{5} \times 0+\sqrt{2} y=0$
$\sqrt{2} y=0 \Rightarrow y=0$
∴x=0, y=0
Question 2
निम्नलिखित सर्मांकरण निकाय को विलोपन विधि से हल करें।
(i) $\frac{x}{2}+\frac{2 y}{3}=-1$
$x-\frac{y}{3}=3$
Sol :
$\frac{x}{2}+\frac{2 y}{3}=-1$
$\frac{3 x+4 y}{6}=-1$
3x+4y=-6..(i)
$x-\frac{y}{3}=3$
$\frac{3 x-y}{3}=3$
3x-y=9..(ii)
(ii) $\frac{x}{6}+\frac{y}{15}=4$
$\frac{x}{3}-\frac{y}{12}=\frac{19}{4}$
Sol :
(iii) $x+\frac{6}{y}=6$
$3 x-\frac{8}{y}=5$
Sol :
$x+\frac{6}{y}=6$..(i)×4
$3 x-\frac{8}{y}=5$×3
समीकरण (i) मे '4' से तथा समीकरण (ii) मे '3' से गुणा करने पर ,
$\begin{aligned}4 x+\frac{24}{y}&=24\\9 x-\frac{24}{y}&=15\\ \hline 13 x&=39\end{aligned}$
x=3
x का मान समीतकण (i) मे रखने पर,
$x+\frac{6}{y}=6$
$3+\frac{6}{y}=6$
$\Rightarrow \frac{6}{y}=3$3y=6
y=2
∴x=3, y=2
Question 3
निम्नलिखित समीकरणो को विलोम विधि से हल करे:
(i) 37x+43y=123
43x+37y=117
Sol :
37x+43y=123..(i)
43x+37y=117..(ii)
जोड़ने पर,
$\begin{aligned}37 x+43 y&=123\\43 x+37 y&=117\\ \hline80 x+80 y&=240\end{aligned}$
80(x+y)=240
$x+y=\frac{240}{80}$
x+y=3..(iii)
समीकरण (i) मे (ii) को घटाने पर,
$\begin{aligned}37 x+43 y&=123\\43 x+37 y&=117\\-\phantom{43x}-\phantom{37y} &=-\phantom{117}\\ \hline -6 x+6 y&=6\end{aligned}$
-6(x-y)=6
x-y=-1..(iv)
समीकरण (iii) तथा (iv) से,
$\begin{aligned}x+y&=3\\x-y&=-1\\ \hline2 x&=2\end{aligned}$
x=1
x का मान समीकरण (iv) मे रखने पर,
x+y=3
1+y=3
y=2
∴ x=1, y=2
(ii) 217x+131y=913
131x+217y=827
(iii) 99x+101y=499
101x+99y=501
(iv) 29x-23y=110
23x-29y=98
Question 4
निम्नलिखित समीकरण निकाय को विलोपन विधि से हल करें
(i) $\frac{1}{x}-\frac{1}{y}=1$
$\frac{1}{x}+\frac{1}{y}=7 \cdot x \neq 0, y \neq 0$
Sol :
$\begin{aligned}\frac{1}{2}-\frac{1}{y}&=1..(i)\\\frac{1}{x}+\frac{1}{y}&=7..(ii)\\ \hline \frac{2}{x}&=8\end{aligned}$
8x=2
$x=\frac{1}{4}$
x का मान समीकरण (ii) मे रखने पर,
$\frac{1}{x}+\frac{1}{y}=7$
$\frac{1}{\frac{1}{4}}+\frac{1}{y}=7$
$4+\frac{1}{y}=7$
$\frac{1}{y}=3$
3y=1
$y=\frac{1}{3}$
$x=\frac{1}{4}, y= \frac{1}{3}$
$\frac{1}{x}=a, \frac{1}{y}=b$
$\begin{aligned}a-b&=1..(i)\\a+b&=7..(ii)\\ \hline 2 a&=8 \end{aligned}$
$a=\frac{8}{2}=4$
a का मान समीकरण (ii) मे रखने पर,
a+b=7
4+b=7
b=3
$\because \frac{1}{x}=a, \frac{1}{y}=b$
$\frac{1}{x}=4 , \frac{1}{y}=3$
4x=1 ,3y=1
$x=\frac{1}{4} , y=\frac{1}{3}$
(ii) $\frac{2}{x}+\frac{3}{y}=13$
$\frac{5}{x}-\frac{4}{y}=-2, x \neq 0, y \neq 0$
Sol :
Let $\frac{1}{x}=a, \frac{1}{y}=b$
2a+3b=13..(i)×4
5a-4b=-2..(ii)×3
समीकरण (i) मे '4' से तथा समीकरण (ii) मे '3' से गुणा करने पर
$\begin{aligned}8 a+12 b&=52\\15 a-12 b&=-6\\ \hline23 a&=46\end{aligned}$
$a=\frac{46}{23}=2$
a का मान समीकरम (i) मे रखने पर,
2a+3b=13
2(2)+3b=13
2(2)+3b=13
4+3b=13
3b=9
$b=\frac{9}{3}=3$
∵$\frac{1}{x}=a, \frac{1}{y}=b$
समीकरण (i) मे '4' से तथा समीकरण (ii) मे '3' से गुणा करने पर,
$\begin{aligned}8 a+12 b&=52\\15 a-12 b&=-6\\ \hline23 a&=46 \end{aligned}$
$a=\frac{46}{23}=2$
a का मान समीकरण (i) मे रखने पर,
2a+3b=13
2(2)+3b=13
$\frac{1}{x}=2, \frac{1}{y}=3$
2x=1. 3y=1
$x=\frac{1}{2}, y=\frac{1}{3}$
(iv) $\frac{3 a}{x}-\frac{2 b}{y}+5=0, \frac{a}{x}+\frac{3 b}{y}-2=0$ (x≠0,y≠0)
Sol :
$\frac{3 a}{x}-\frac{2 b}{y}+5=0$...(i)×3
$\frac{a}{x}+\frac{3 b}{y}-2=0$...(ii)×2
$\begin{aligned}\frac{9a}{x}-\frac{6 b}{y}+15&=0\\\frac{2 a}{x}+\frac{6 b}{y}-4&=0\\ \hline \frac{119}{x}+11&=0\end{aligned}$
$\frac{11a}{x}=-11$
-11x=11a
x=-a
x का मान समीकरण (ii) मे रखने पर,
$\frac{a}{x}+\frac{3 b}{y}-2=0$
$\frac{a}{-a}+\frac{3 b}{y}-2=0$
$\frac{3b}{y}-3=0$
$\frac{3 b}{y}=3$
3y=3b
$y=\frac{3 b}{3}$
y=b
∴x=-a, y=b
Let $\frac{1}{x}=u, \frac{1}{y}=v$
3au-2bv+5=0..(i)
4a+3bv-2=0..(ii)
Question 5
निम्नलिखित समीकरण-निकाय को विलोपन विधि से हल करें
(i) $\frac{2 x+5 y}{x y}=6, \frac{4 x-5 y}{x y}=-3$, जहाँ x≠0 और y≠0
Sol :
$\frac{2x}{x y}+\frac{5 x}{x y}=6$
$\frac{2}{y}+\frac{5}{x}=6$..(i)
$\frac{4 x}{x y}-\frac{5 y}{x y}=-3$
$\frac{4}{y}-\frac{5}{x}=-3$..(ii)
समीकरण (i) तथा (ii) से,
$\begin{aligned}\frac{2}{y}+\frac{5}{x}&=6\\\frac{4}{y}-\frac{5}{x}&=-3\\ \hline\frac{6}{y}&=3\end{aligned}$
3y=6
$y=\frac{6}{3}=2$
y का मान समीकरण (i) मे रखने पर,
$\frac{2}{y}+\frac{5}{x}=6$
$\frac{2}{2}+\frac{5}{x}=6$
$\frac{5}{x}=5$
5x=5
$x=\frac{5}{5}=1$
∴x=1, y=2
$\begin{array}{l|l}\frac{2 y}{x y}+\frac{5 y}{x y}=6&\frac{4 x}{x y}-\frac{5 y}{x y}=-3\\\frac{2}{y}+\frac{5}{x}=6&\frac{4}{y}-\frac{5}{x}=-3\end{array}$
Let $\frac{1}{y}=a, \quad \frac{1}{x}=b$
$\begin{aligned}2a+5b&=6..(i)
4a-5b&=-3..(ii)\\ \hline 6a=3\end{aligned}$
6a=3
$a=\frac{3}{6}$
$a=\frac{1}{2}$
a का मान समीकरण (ii) मे रखने पर,
2a+5b=6
$2\left(\frac{1}{2}\right)+5 b=6$
5b=5
$b=\frac{5}{5}=1$
∵ $\frac{1}{x}=b , \frac{1}{y}=a$
$\frac{1}{x}=1, \frac{1}{y}=\frac{1}{2}$
x=1 ,y=2
(ii) x+y=2xy
x-y=6xy
Sol :
x+y=2xy
$\frac{x+y}{x y}=2$
$\frac{x}{x y}+\frac{y}{x{y}}=2$
$\frac{1}{y}+\frac{1}{x}=2$..(i)
x-y=6xy
$\frac{x-y}{xy}=6$
$\frac{x}{x y}-\frac{y}{x{y}}=6$
$\frac{1}{y}-\frac{1}{x}=6$..(ii)
समीकरण (i) तथा (ii) से,
$\begin{aligned}\frac{1}{y}+\frac{1}{x}&=2\\\frac{1}{y}-\frac{1}{x}&=6\\\hline \frac{2}{y}&=8\end{aligned}$
8y=2
$y=\frac{2}{8}=\frac{1}{4}$
y का मान समीकरण (i) मे रखने पर,
$\frac{1}{y}+\frac{1}{x}=2$
$\frac{1}{\frac{1}{4}}+\frac{1}{x}=2$
$4+\frac{1}{x}=2$
$\frac{1}{x}=-2$
-2x=1
$x=-\frac{1}{2}$
∴$x=-\frac{1}{2}, y=\frac{1}{4}$
Question 6
निर्नलिखित समीकरण निकाय को x और y के लिए हल करें
(i) $\frac{1}{2(2 x+3 y)}+\frac{12}{7(3 x-2 y)}=\frac{1}{2}, \frac{7}{(2 x+3 y)}+\frac{4}{(3 x-2 y)}=2$
जहाँ (2x+3y)≠0 और (3x-2y)≠0
Sol :
Let $\frac{1}{2 x+3 y}=a, \frac{1}{3 x-2 y}=b$
$\frac{a}{2}+\frac{12}{7} b=\frac{1}{2}$
$\frac{7 a+24 b}{14}=\frac{1}{2}$
7a+24b=7..(i)
7a+4b=2..(ii)
समीकरण (i) तथा (ii) से,
$\begin{aligned}7a+24b&=7\\7a+4b&=2\\-\phantom{7a}-\phantom{4b}&=-\phantom{2}\end{aligned}$
20b=5
$b=\frac{5}{20}=\frac{1}{4}$
b का मान समीकरण (ii) मे रखने पर
7a+4b=2
$7 a+4\left(\frac{1}{4}\right)=2$
7a=1
$a=\frac{1}{7}$
$\because \frac{1}{2 x+3 y}=a, \frac{1}{3 x-2 y}=b$
$\frac{1}{2 x+3 y}=\frac{1}{7}, \frac{1}{3 x-2 y}=\frac{1}{4}$
2x+3y=7..(iii)×2 ,3x-2y=4..(iv)×3
समीकरण (iii) तथा (iv) से
$\begin{aligned}4x+6y&=14\\9x-6y&=12\\13x&=26\end{aligned}$
x=2
x का मान समीकरण (iii) मे रखने पर ,
2x+3y=7
2(2)+3y=7
4+3y=7
3y=3
$y=\frac{3}{3}=1$
∴x=2,y=1
(ii) $\frac{2}{x-1}+\frac{3}{y+1}=2$
$\frac{3}{x-1}+\frac{2}{y+1}=\frac{13}{6}$, x≠1,y≠-1
Sol :
$\frac{2}{x-1}+\frac{3}{y+1}=2$..(i)×2
$\frac{3}{x-1}+\frac{2}{y+1}=\frac{13}{6}$..(ii)×3
समीकरण (i) तथा (ii) से
$\begin{aligned}\frac{4}{x-1}+\frac{6}{y+1}&=4\\\frac{9}{x-1}+\frac{6}{y+1}&=\frac{13}{2}\\ -\phantom{\frac{9}{x-1}}-\phantom{\frac{6}{y+1}}&=-\phantom{\frac{13}{2}}\\ \hline \frac{-5}{x-1}&=4-\frac{13}{2}\end{aligned}$
$-\frac{5}{x-1}=\frac{8-13}{2}$
$\frac{-5}{x-1}=\frac{-5}{2}$
x-1=2
x=3
x का मान समीकरण (i) मे रखने पर
$\frac{2}{x-1}+\frac{3}{y+1}=2$
$\frac{2}{3-1}+\frac{3}{y+1}=2$
$\frac{2}{2}+\frac{3}{y+1}=2$
$\frac{3}{y+1}=1$
y=1=3
y=2
∴x=3, y=2
Put $\frac{1}{x-1}=a, \frac{1}{y+1}=b$
2a+3b=2..(i)
$3a+2b=\frac{13}{6}$..(ii)
Question 7
निम्नलिखित प्रश्नों के लिए रैखिक समीकरण युग्म बनायें और विलापेन विधि से उनके हल ज्ञात करें।
(i) आफताब अपनी पुत्री से कहता है, "7 वर्ष पहले मेरी उम्र तुम्हारी उस समय की उम्र की सात गुनी थी।आज से 3 वर्ष बाद मेरी उम्र, तुम्हारी उम्र (तीन वर्ष बाद) की तिगुनी हो जाएगी।" उनकी वर्तमान उम्र ज्ञात करे।
Sol :
माना आफताब की वर्तमान उम्र=x वर्ष
आफताब की पुत्री की वर्तमान उम्र=y वर्ष
प्रश्न से,
x-7=7(y-7)
x-7=7y-49
x-7y=-49+7
x-7y=-42..(i)
अब,
x+3=3(y+3)
x+3=3y+9
x-3y=9-3
x-3y=6..(ii)
समीकरण (i) तथा (ii) से
$\begin{aligned}x-7y&=-42\\x-3y&=6\\ -\phantom{x}+\phantom{3y}&=-\phantom{6} \hline -4y&=-48\end{aligned}$
$y=\frac{48}{4}$
y=12
y का मान समीकरण (ii) मे रखने पर,
x-3y=6
x-3(12)=6
x-36=6
x=6+36=42
∴ आफताब की वर्तमान उम्र=42 वर्ष
आफताब की पुत्री का वर्तमान उम्र=12 वर्ष
(ii) 5 वर्ष पहले नूरी की उम्र सोनू की उम्र की तीन गुनी थी।दस वर्ष बाद नूरी की उम्र सोनू की उम्र की दुगुनी हो जायगी । नूरी और सोनू की उम्र कितनी है?
Sol :
माना नूरी की वर्तमान उम्र =x वर्ष
सोनू की वर्तमान उम्र =y वर्ष
प्रश्न से,
x-5=3(y-5)
x-5=3y-15
x-3y=-15+5
x-3y=-10..(i)
अब,
x+10=2(y+10)
x+10=2y+20
x-2y=10..(ii)
समीकरण (i) तथा (ii) से,
$\begin{aligned}x-3y&=-10\\x-2y&=10\\ -\phantom{x}+\phantom{2y}&=-\phantom{10}\\ \hline -y=-20\end{aligned}$
y=20
y का मान समीकरण (ii) मे रखने पर,
x-2y=10
x-2(20)=10
x-40=10
x=50
∴ नूरी की वर्तमान उम्र =50 वर्ष
सोनू की वर्तमान उम्र =20 वर्ष
(iii) दो संख्याओ का अन्तर 26 है और एक संख्या दूसरे की तीन गुना है। इन संख्याओ को ज्ञात करे।
Sol :
माना पहली संख्या=x
दूसरी संख्या=y, x>y
प्रश्न से,
x-y=26..(i)
x=3y
x-3y=0..(ii)
समीकरण (i) तथा (ii) से,
$\begin{aligned}x-y=&26\\x-3 y&=0\\ -\phantom{x}+\phantom{3 y}&=-\phantom{0}\\ \hline 2y&=26\end{aligned}$
y=13
y का मान समीकरण (i) मे रखने पर,
x-y=26
x-13=26
x=26+13
x=39
∴ पहली संख्या=32
दूसरी संख्या=13
Good morning
ReplyDelete