Processing math: 100%

KC Sinha Mathematics Solution Class 11 Chapter 4 कोण और उनके माप (Angles and their measures) Exercise 4.1


Question 1
[Find the radian measure corresponding to the following degree measures]:
Note: रेडियन माप=\dfrac{\pi}{180^{\circ}}\times डिग्री माप

(i) 105°
Sol :
रेडियन माप=\dfrac{\pi}{180^{\circ}}\times 105^{\circ}

=\dfrac{7\pi}{12}

(ii) 25°
Sol :
रेडियन माप=\dfrac{\pi}{180^{\circ}}\times 25^{\circ}

=\dfrac{5\pi}{36}


(iii) -56°
Sol :
रेडियन माप=\dfrac{\pi}{180^{\circ}}\times (-56^{\circ})

=-\dfrac{14\pi}{45}

(iv) 7° 30'
Sol :
Note: 1'=\left(\dfrac{1}{60}\right)^{\circ}

=7^{\circ}\times \left(\dfrac{30}{60}\right)^{\circ}

= \left(7\dfrac{1}{2}\right)^{\circ}=\left(\dfrac{15}{2}\right)^{\circ}

रेडियन माप=\dfrac{\pi}{180^{\circ}}\times \left(\dfrac{15}{2}\right)^{\circ}

=\dfrac{\pi}{24}


(v) 40° 20'
Sol :

Question 2
निम्नलिखित रेडियन माप के संगत माप ज्ञात कीजिए (\pi=\frac{22}{7} का प्रयोग करे ):
[Find the degree measures corresponding to the following radian measures]
(i)\frac{7 \pi}{6}
Sol :
डिग्री माप==\dfrac{180^{\circ}}{\pi} \times \dfrac{7 \pi}{6}=210^{\circ}

(ii) \frac{5 \pi}{3}
(iii)-\frac{5 \pi}{24}
(iv)\frac{-2 \pi}{3}

(v) 6
Sol :
डिग्री माप=\dfrac{18 0^{\circ}}{\pi} \times 6=7

=\left(\dfrac{3780}{11}\right)^{\circ}

=\left(343 \dfrac{7}{11}\right)^{0}

=343^{\circ}\left(\dfrac{7}{11} \times 60\right)'

=343^{\circ}\left(\dfrac{420}{11}\right)^{\prime}

=343^{\circ}\left(38 \dfrac{2}{11}\right)^{\prime}

=343^{\circ} 38^{\prime}\left(\dfrac{2}{\pi} \times 60\right)^{\prime \prime}

=343^{\circ} 38^{\prime} 11^{\prime \prime} approx

Question 3
18^{\circ} 33^{\prime} 45^{\prime \prime} को वृत्तीय माप में लिखे ।
[Express 18^{\circ} 33^{\prime} 45^{\prime \prime} in circular measure]
Sol :
18^{\circ} 33^{\prime} 45^{\prime \prime}=18^{\circ} 33^{\prime} \dfrac{45}{60}^{\prime}

=18^{\circ}\left(\frac{135}{4}\right)^{\prime}

=18^{\circ}\left(\frac{135}{4 \times 60}\right)^{\circ}

=18^{\circ}\left(\frac{9}{16}\right)^{\circ}

=\left(\frac{297}{16}\right)^{\circ}

=\frac{297}{16} \times \frac{\pi}{180}=\dfrac{33\pi}{320}

Question 4
किसी त्रिभुज के कोण 1:3:5 की निष्पत्ति में है , तो उनका मान रेडियन में निकाले ।
[The angles of a triangle are in the ratio 1:3:5 , find them in radian]
Sol :
\begin{aligned} Let & \angle A=x \\ & \angle B=3 x \\ & \angle C=5 x \end{aligned}












\angle A+\angle B+\angle C=180^{\circ}

x+3 x+5 x=180^{\circ}

9 x=180^{\circ}

x=\dfrac{18 0^\circ}{9}=20^{\circ}

∠A=x=20° =20 \times \frac{\pi}{180}=\frac{\pi}{9}

∠B=3x=3×20° =60^{\circ} \times \frac{\pi}{180}=\frac{\pi}{3}

∠C=5x=5×20° =100° =100\times \dfrac{\pi}{180}=\dfrac{5\pi}{9}


Question 5
Sol :
Angle of assumed triangle are
a-d , a , a+d

The sum of angle of triangle is 180°

a-d+a+a+d=180°

3a=180°

a=\frac{180^{\circ}}{3}

a=60°

\frac{a+d}{a-d}=\frac{\pi}{60^{\circ}} \times \frac{180^{\circ}}{\pi}

\frac{60+d}{60-d}=3

60+d=180-3d

3d+d=180-60

4d=120

d=\frac{120}{4}=30

पहला कोण=a-d=60-30=30°

दूसरा कोण=a=60°

तीसरा कोण=a+d=60+30=90°


Question 6
Sol :












Angle between two needle

=\frac{360^{\circ}}{12} \times 2 \frac{1}{2}

=30^{\circ} \times \frac{5}{2}

=75°

=75^{\circ} \times \frac{\pi}{180^{\circ}}

=\frac{5 \pi}{12}


Question 7
Sol :











Angle between two needle
=\frac{360}{12} \times 4

=120^{\circ} \times \frac{\pi}{180^{\circ}}

=\frac{2 \pi}{3}


Question 8
Sol :
L=37.4 cm

\theta=60^{\circ}=60^{\circ} \times \frac{\pi}{180^{\circ}}

\theta=\frac{\pi}{3}











r=\frac{\text{L}}{\theta}

=\frac{37 \cdot 4}{\frac{\pi}{3}}=\frac{37 \cdot 4}{\frac{22}{7 \times 3}}

=\frac{37 \cdot 4}{22} \times 7 \times 3

=35.7 cm


Question 9
Sol :
The radius of both the circle is r1 and r2
And the angles are θand θboth circle have their length l
θ1=65° θ2=210°









r=\frac{l}{\theta}

r_{1}=\frac{l}{65^{\circ}}..(i)

r_{2}=\frac{l}{110^{\circ}}..(ii)

On dividing (i) by (ii)

\frac{r_{1}}{r_{2}}=\dfrac{\frac{l}{65^{\circ}}}{\frac{l}{110^{\circ}}}=\frac{110^{\circ}}{65^{\circ}}

=22:13


Question 10
Sol :









r=1.5 cm

\theta=\frac{360^{\circ}}{12} \times 8=240^{\circ}

\theta=240^{\circ}=240^{\circ} \times \frac{\pi}{180^{\circ}}

\theta=\frac{4 \pi}{3}


\theta=\frac{l}{r}

\frac{4 \pi}{3}=\frac{l}{1 \cdot 5}

\frac{4 \times 3.14}{3} \times 1.5=l

6.28 cm =l


Question 11
Sol :






θ=30°=\left(\frac{30^{\circ}}{60^{\circ}}\right)=\frac{1}{2}^{\circ}

=\frac{1}{2} \times \frac{\pi}{180^{\circ}}=\frac{\pi}{360^{\circ}}

l=1 cm

r=\frac{l}{\theta}=\frac{1 \mathrm{cm}}{\frac{\pi}{360^{\circ}}}

=\frac{1 \times 360^{\circ}}{\pi} \mathrm{cm}

=\frac{360^{\circ}}{22} \times 7

=\frac{1260}{11} \mathrm{cm}

=114 \frac{6}{11} \mathrm{cm}


=\operatorname{1m} 14 \frac{6}{11} \mathrm{cm}


Question 12
Sol :








The diameter of the moon is d

\theta=31^{\prime}=\frac{31}{60} \times \frac{\pi}{180^{\circ}}

r=38400 km

\theta=\frac{l}{r}

l=θ×r

=\frac{31}{60} \times \frac{\pi}{180^{\circ}} \times 38400 \mathrm{km}

=\frac{31}{9} \times \frac{22}{7} \times 32 \mathrm{km}

=\frac{21824}{63} \mathrm{km}

=346 \frac{26}{63} \mathrm{km}


Question 13
Sol :
d=4 feet

Speed of train=𝜋×4×6 feet/r

=24𝜋 feet/r

4 comments:

Contact Form

Name

Email *

Message *