Loading [MathJax]/jax/element/mml/optable/MathOperators.js

KC Sinha Mathematics Solution Class 11 Chapter 6 त्रिकोणमितीय फलन (Trigonometric function) Exercise 6.1

Exercise 6.1

Question 1

साबित करे (prove that)
(i) \sin 15^{\circ}=\frac{\sqrt{3}-1}{2 \sqrt{2}}
Sol :
L.H.S
sin15°=sin(45°-30°)

[∵sin(A-B)=sinAcosB-cosAsinB]

=\sin 45^{\circ} \cos 30^{\circ}-\cos 45^{\circ} \sin 30^{\circ}

=\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}} \times \frac{1}{2}

=\frac{\sqrt{3}}{2 \sqrt{2}}-\frac{1}{2 \sqrt{2}}

=\frac{(\sqrt{3}-1)}{2 \sqrt{2}}


(ii)\cos 75^{\circ}=\frac{\sqrt{3}-1}{2 \sqrt{2}}
Sol :
L.H.S
\cos 75^{\circ}=\cos (45^{\circ}+30^{\circ})


(iii)\tan 75^{\circ}=2+\sqrt{3}
Sol :
L.H.S
\tan 75^{\circ}=\tan (45^{\circ}+30^{\circ})

\tan (A+B)=\frac{\tan A+tanB}{1-\tan A.tanB}

=\frac{\tan 45^{\circ}+\tan 30^{\circ}}{1-\tan 40^{\circ} \tan 30^{\circ}}

=\frac{1+\frac{1}{\sqrt{3}}}{1-\frac{1}{\sqrt{3}}}

=\frac{\frac{\sqrt{3}+1}{\sqrt{3}}}{\frac{\sqrt{3}-1}{-\sqrt{3}}}

=\frac{\sqrt{3}+1}{\sqrt{3}-1}

=\frac{\sqrt{3}+1}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}

=\frac{3+\sqrt{3}+\sqrt{3}+1}{(\sqrt{3})^{2}-(1)^{2}}

=\frac{4+2 \sqrt{3}}{2}

=\frac{2(2+\sqrt{3})}{2}

\tan 75^{\circ}=2+\sqrt{3}


(iv)\tan 15^{\circ}=2-\sqrt{3}
Sol :

(v)\sin 75^{\circ}=\frac{\sqrt{3}+1}{2 \sqrt{2}}

Question 2

निम्नलिखित के मान निकाले
Find the value of the following :
(i) \tan \left(\frac{11 \pi}{12}\right)
Sol :
\tan \left(\frac{11 \pi}{12}\right)=\tan \left(\pi-\frac{\pi}{12}\right)

=-\tan \frac{\pi}{12}

=-\tan \left(\frac{\pi}{4}-\frac{\pi}{6}\right)
[\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \cdot \tan B}]

=-\frac{\tan \frac{\pi}{4}-\tan \frac{\pi}{6}}{1+\tan \frac{\pi}{4} \times \tan \frac{\pi}{6}}

=-\frac{1-\frac{1}{\sqrt{3}}}{1+\frac{1}{\sqrt{3}}}

=-\frac{\frac{\sqrt{3}-1}{\sqrt{3}}}{\frac{\sqrt{3+1}}{\sqrt{3}}}

=-\frac{\sqrt{3}-1}{\sqrt{3}+1} \times \frac{\sqrt{3}-1}{\sqrt{3}-1}

=-\left(\frac{3-\sqrt{3}-\sqrt{3}+1}{(\sqrt{3})^{2}-1^{2}}\right]

=-\left(\frac{3-\sqrt{3}-\sqrt{3}+1}{(\sqrt{3})^{2}-1^{2}}\right]

=-\left[\frac{4-2 \sqrt{3}}{2}\right]

=-\frac{2(2-\sqrt{3})}{2}

=-2+\sqrt{3}=\sqrt{3}-2


(ii) \tan \left\{(-1)^{n} \frac{\pi}{4}\right\} where n is integer
Sol :
[tan(-θ)=tanθ

\tan \left(\frac{\pi}{4}\right)=1

\tan \left(-\frac{\pi}{4}\right)=-1]

\tan \left\{(-1)^{n} \frac{\pi}{4}\right\}

=(-1)^{n}\cdot 1


(iii) \tan \frac{13 \pi}{12}
Sol :
=\tan \left(\pi+\frac{\pi}{12}\right)

={\tan }\frac{\pi}{12}

=\tan \left(\frac{\pi}{4}-\frac{\pi}{6}\right)

Question 3

साबित करे(prove that)
(i) sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x=cosx
Sol :
(i)
L.H.S
\cos (n+1) x \cos (n+2) x+\sin (n+1) x \sin (n+2) x

\cos (A-B)=\cos A \cos B+\sin A \sin B

=\cos [(n+1) x-(n+2) x]

=\cos [n x+x-nx-2 x]

=cos(-x)

=cosx


(iii) \cos \left(\frac{\pi}{4}-x\right)\cos \left(\frac{\pi}{4}-y\right)-\sin \left(\frac{\pi}{4}-x\right)\sin \left(\sin \frac{\pi}{4}-y\right)=sin(x+y)
Sol :
\cos \left(\frac{\pi}{4}-x\right) \cdot \cos \left(\frac{\pi}{4}-y\right)-\sin \left(\frac{\pi}{4}-x\right) \sin \left(\frac{\pi}{4}-y\right)

\cos (A+B)=cosA \cos B-\sin A \sin B

=\cos \left(\frac{\pi}{4}-x+\frac{\pi}{4}-y\right)

=\cos \left(\frac{\pi}{2}-x-y\right)

=\cos \left[\frac{\pi}{2}-(x+y)\right]

=sin(x+y)


(iv) tan3x-tan2x-tanx=tan3x.tan2x.tanx
Sol :
3x=2x+x

दोनो तरफ tan लेने पर
(multiplying both sides by tan)

tan 3x=tan (2x+x)

\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}

\tan 3 x=\frac{\tan 2 x+\tan x}{1-\tan 2 x \tan x}

tan3x-tan3x.tan2x.tanx=tan2x+tanx

tan3x-tan2x-tanx=tan3x.tan2x.tanx


(v) \frac{\tan (\theta+\phi)+\tan (\theta-\phi)}{1-\tan (\theta+\phi) \tan (\theta-\phi)}=\tan 2 \theta
Sol :
L.H.S
\frac{\tan (\theta+\phi)+\tan (\theta-\phi)}{1-\tan (\theta+\phi) \tan (\theta-\phi)}

=\tan (\theta+\phi+\theta-\phi)

=tan2θ

Question 4

साबित करे
(Prove that)
(i) \cos \left(\frac{3 \pi}{4}+x\right)-\cos \left(\frac{3 \pi}{4}-x\right)=-\sqrt{2} \sin x
Sol :
L.H.S
\cos \left(\frac{3 \pi}{4}+x\right)-\cos \left(\frac{3 \pi}{4}-x\right)

=\left[\cos \frac{3 \pi}{4} \cos x-\sin \frac{3 \pi}{4} \sin x\right]-\left[\cos \frac{3 \pi}{4} \cos x+\sin \frac{3 \pi}{4} \sin x\right]

=\cos \frac{3 \pi}{4} \cos x-\sin \frac{3 \pi}{4} \sin x-\cos \frac{3 \pi}{4} \cos x-\sin \frac{3 \pi}{4} \sin x

=-2 \sin \frac{3 \pi}{4} \sin x

=-2 \sin \left(\pi-\frac{\pi}{4}\right) \sin x

=-2\left(\sin \frac{\pi}{4}\right) \sin x

=-2 \times{\frac{1}{\sqrt{2}}} \sin x

=-\sqrt{2} \sin x


(iii) \sin ^{2} 6 x-\sin ^{2} 4 x=\sin 2 x \sin 10 x
Sol :
L.H.S

\sin ^{2} 6 x-\sin ^{2} 4 x

\sin (A+B) \sin (A-B) =\sin ^{2} A-\sin ^{2} B

=\sin (6 x+4 x) \cdot \sin (6 x-4 x)

= \sin 10 x \cdot \sin 2 x


Question 5

साबित करे
Prove that:
\cos 9^{\circ}+\sin 9^{\circ}=\sqrt{2} \sin 54^{\circ}
Sol :
\cos 9^{\circ}+\sin 9^{\circ}

=\sqrt{2} \times \frac{1}{\sqrt{2}}(\cos 9+\sin 9)

=\sqrt{2}\left(\frac{1}{\sqrt{2}} \cos 9^{\circ}+\frac{1}{\sqrt{2}} \sin 9^{\circ}\right)

=\sqrt{2}(\sin 45^{\circ} \cos 9^{\circ}+\cos 45^{\circ} \sin 9^{\circ}]

=\sqrt{2} \sin (45^{\circ}+9^{\circ})

=\sqrt{2} \sin 54^{\circ}

Question 6

साबित करे
Prove that:
\frac{\cos 20^{\circ}-\sin 20^{\circ}}{\cos 20^{\circ}+\sin 20^{\circ}}=\tan 25^{\circ}
Sol :
[\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A\tan B}]

L.H.S
\frac{\cos 20^{\circ}-\sin 20^{\circ}}{\cos 20^{\circ}+\sin 20^{\circ}}

Dividing both sides by \cos 20^{\circ}

=\frac{\frac{\cos 20^{\circ}}{\sin 20^{\circ}}-\frac{\sin 20^{\circ}}{\cos 20^{\circ}}}{\frac{ \cos 20^{\circ}}{\cos 20^{\circ}}+\frac{\operatorname{sin} 20^{\circ}}{\cos 20^{\circ}}}

=\frac{1-\tan 20^{\circ}}{1+\tan 20^{\circ}}

=\frac{\tan 45^{\circ}-\tan 20^{\circ}}{1+\tan 45^{\circ} \cdot \tan 20^{\circ}}

=\tan (45^{\circ}-20^{\circ})=\tan 25^{\circ}

Question 7

साबित करे
Prove that :
\frac{\tan \left(\frac{\pi}{4}+x\right)}{\tan \left(\frac{\pi}{4}-x\right)}=\left(\frac{1+\tan x}{1-\tan x}\right)^{2}
Sol :
L.H.S
\frac{\tan \left(\frac{\pi}{4}+x\right)}{\tan \left(\frac{\pi}{4}-x\right)}

=\frac{\frac{\tan \frac{\pi}{4}+\tan x}{1-\tan \frac{\pi}{4} \cdot \tan n}}{\frac{\tan \frac{\pi}{4}-\tan x}{1+\tan \frac{\pi}{4}\cdot \tan x} }

=\frac{\frac{1+\tan x}{1-\tan x}}{\frac{1-\tan x}{1+\tan x}}

=\frac{(1+\tan x)^{2}}{(1-\tan x)^{2}}

=\left(\frac{1+\tan x}{1-\tan x}\right)^{2}

Question 8

साबित करे
Prove that:
(i) \frac{1}{\tan 3 A-\tan A}-\frac{1}{\cot 3 A-\cot A}=\cot 2 A
Sol :
L.H.S
\frac{1}{\tan 3 A-\tan A}-\frac{1}{\cot 3 A-\cot A}

=\frac{1}{\frac{\sin 3 A}{\cos 3 A}-\frac{\sin A}{\cos A}}-\frac{1}{\frac{\cos 3 A}{\sin 3 A}-\frac{\cos A}{\sin A}}

=\frac{1}{\frac{\sin 3 A \cos A-\cos 3 A \sin A}{\cos 3 A \cos A}}-\frac{1}{\frac{\cos 3 A \sin A-\sin 3 A \cos A}{\sin 3 A \sin A}}

=\frac{\cos 3 A \cos A}{\sin (3 A-A)}-\frac{\sin 3A \sin A}{\sin (A-3 A)}

=\frac{\cos 3 A \cos A}{\sin 2 A}-\frac{\sin 3 A \sin A}{\sin (-2 A)}

=\frac{\cos 3 A \cos A}{\sin 2 A}+\frac{\sin 3 A \sin A}{\sin 2 A}

=\frac{\cos 3 A \cos A+\sin 3 A \sin A}{\sin 2 A}

=\frac{\cos (3 A-A)}{\sin 2 A}

=\frac{\cos 2 A}{\sin 2 A}=\cos 2 A


(iii) \frac{\sin 3 \alpha}{\sin \alpha}+\frac{\cos 3 \alpha}{\cos \alpha}=4 \cos 2 \alpha
Sol :
L.H.S
\frac{\sin 3 \alpha}{\sin \alpha}+\frac{\cos 3 \alpha}{\cos \alpha}

=\frac{\sin 3 \alpha \cos \alpha+\cos 3 \alpha \sin \alpha}{\sin \alpha \cos \alpha}

=\frac{\sin (3 \alpha+\alpha)}{\sin \alpha \cos \alpha}

=\frac{\sin 4 \alpha}{\sin \alpha \cos \alpha}
[sin2A=2sinAcosA]

=\frac{2 \sin 2(2 \alpha)}{2 \sin \alpha \cos \alpha}

=\frac{2 \times 2 \sin 2 \alpha \cos 2 \alpha}{\sin 2 \alpha}\

=4 \cos 2 \alpha

Question 9

साबित करे
Prove that :
\frac{\tan \left(\frac{\pi}{4}+\mathrm{A}\right)-\tan \left(\frac{\pi}{4}-\mathrm{A}\right)}{\tan \left(\frac{\pi}{4}+\mathrm{A}\right)+\tan \left(\frac{\pi}{4}-\mathrm{A}\right)}=\sin 2 \mathrm{A}
Sol :
L.H.S
\frac{\tan \left(\frac{\pi}{4}+\mathrm{A}\right)-\tan \left(\frac{\pi}{4}-\mathrm{A}\right)}{\tan \left(\frac{\pi}{4}+\mathrm{A}\right)+\tan \left(\frac{\pi}{4}-\mathrm{A}\right)}

=\frac{\frac{\operatorname{sim}\left(\frac{\pi}{4}+A\right)}{\cos \left(\frac{\pi}{4}+A\right)}-\frac{\sin \left(\frac{\pi}{4}-A\right)}{\cos \left(\frac{\pi}{4}-A\right)}}{\frac{\sin \left(\frac{\pi}{4}+A\right)}{\cos \left(\frac{\pi}{4}+A\right)}+\frac{\sin \left(\frac{\pi}{4}-A\right)}{\cos \left(\frac{\pi}{4}-A\right)}}

=\dfrac{\frac{\sin \left(\frac{\pi}{4}+A\right) \cos \left(\frac{\pi}{4}-A\right)-\cos \left(\frac{\pi}{4}+A\right) \cdot \sin \left(\frac{\pi}{4}-A\right)}{\cos \left(\frac{\pi}{4}+A\right) \cos \left(\frac{\pi}{4}-A\right)}}{\frac{\sin \left(\frac{\pi}{4}+A\right) \cos \left(\frac{\pi}{4}-A\right)+\cos \left(\frac{\pi}{4}+A\right) \sin \left(\frac{\pi}{4}-A\right)}{\cos \left(\frac{\pi}{4}+A\right) \cos \left(\frac{\pi}{4}-A\right)}}

=\frac{\sin \left[\left(\frac{\pi}{4}+A\right)-\left(\frac{\pi}{4}-A\right)\right]}{\sin \left[\left(\frac{\pi}{4}+A\right)+\left(\frac{\pi}{4}-A\right)\right]}

=\frac{\sin \left(\frac{\pi}{4}+A-\frac{\pi}{4}+A\right)}{\sin \left(\frac{\pi}{4}+A+\frac{\pi}{4}-A\right)}

=\frac{\sin 2 A}{\sin \frac{\pi}{2}}=\sin 2 A

Question 10

साबित करे
Prove that:
\tan 40^{\circ}+2 \tan 10^{\circ}=\tan 50^{\circ}
Sol :
50°=40°+10°

tan50°=tan(40°+10°)

\tan 50^{\circ}=\frac{\tan 40^{\circ}+\tan 10^{\circ}}{1-\tan 40^{\circ} \tan 10^{\circ}}

tan50°-tan50°tan40°tan10°=tan40°+tan10°

tan50°-cot(90°-50°)tan40°tan10°=tan40°+tan10°

tan50°-cot40°tan40°tan10°=tan40°+tan10°

tan50°-tan10°=tan40°+tan10°

tan50°=tan40°+2tan10°

Question 11

साबित करे
Prove that:
\tan (\alpha+\beta)\tan (\alpha-\beta)=\frac{\sin ^{2} \alpha-\sin ^{2} \beta}{\cos ^{2} \alpha-\sin ^{2} \beta}
Sol :
[sin(A+B)sin(A-B)=\sin ^{2} A-\sin ^{2} B

cos(A+B)cos(A-B)=\cos ^{2} A-\sin ^{2} B]

R.H.S
\frac{\sin ^{2} \alpha-\sin ^{2} \beta}{\cos ^{2} \alpha-\sin ^{2} \beta}

=\frac{\sin (\alpha+\beta) \sin (\alpha-\beta)}{\operatorname{cos}(\alpha+\beta) \cos \beta(\alpha-\beta)}

=\tan (\alpha+\beta) \tan (\alpha-\beta)

Question 12

साबित करे
Prove that :
\tan ^{2} \alpha-\tan ^{2} \beta=\frac{\sin (\alpha+\beta) \sin (\alpha-\beta)}{\cos ^{2} \alpha \cos ^{2} \beta}
Sol :
[sin(A+B)sin(A-B)=\sin ^{2} A-\sin ^{2} B]

R.H.S
=\frac{\sin (\alpha+\beta) \sin (\alpha-\beta)}{\cos ^{2} \alpha \cos ^{2} \beta}

=\frac{\cos ^{2} \beta-\cos ^{2} \alpha}{\cos ^{2} \alpha \cos ^{2} \beta}

=\frac{\cos ^{2} \beta }{\cos ^{2} \alpha \cos ^{2} \beta}-\frac{\cos ^{2} \alpha}{\cos ^{2} \alpha \cos ^{2} \beta}

=\sec ^{2} \alpha-\sec ^{2} \beta

=\left(1+\tan ^{2} \alpha\right)-\left(1+\tan ^{2} \beta\right)

=1+\tan ^{2} \alpha-1-\tan ^{2} \beta

=\tan ^{2} \alpha-\tan ^{2} \beta

Question 13

साबित करे
Prove that:
(i) \tan \{(2 n+1) \pi+\theta\}+\tan \{(2 n+1) \pi-\theta\}=0
Sol :
L.H.S
\tan \{(2 n+1) \pi+\theta\}+\tan \{(2 n+1) \pi-\theta\}

=\tan \theta+(-\tan \theta)

=0


(ii) \tan \left(\frac{\pi}{4}+\theta\right) \tan \left(\frac{3 \pi}{4}+\theta\right)+1=0
Sol :
L.H.S
\tan \left(\frac{\pi}{4}+\theta\right) \tan \left(\frac{3 \pi}{4}+\theta\right)+1

=\tan \left(\frac{\pi}{4}+\theta\right) \tan \left[\pi-\left(\frac{\pi}{4}-\theta\right)\right]+1

=\tan \left(\frac{\pi}{4}+\theta\right)\left[-\tan \left(\frac{\pi}{4}-\theta\right)\right]+1

=-\tan \left(\frac{\pi}{4}+\theta\right) \tan \left(\frac{\pi}{4}-\theta\right)+1

=-\left(\frac{\tan \frac{\pi}{4}+\tan \theta}{1-\tan \frac{\pi}{4} \cdot \tan \theta} \times \frac{\tan \frac{\pi}{4}-\tan \theta}{1+\tan \frac{\pi}{2} \cdot \tan \theta}\right)+1

=\left[-\frac{1+\tan \theta}{1-\tan \theta} \times \frac{1-\tan \theta}{1+\tan \theta}\right]+1

=-1+1

=0

Question 14

यदि(If) \tan \alpha=\frac{m}{m+1}, \tan \beta=\frac{1}{2 m+1}साबित करे (prove that)
\alpha+\beta=\frac{\pi}{4}
Sol :
\tan (\alpha+B)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan B}

\tan (\alpha \rightarrow B)=\frac{\frac{m}{m+1}+\frac{1}{2 m+1}}{1-\frac{m}{m+1} \times \frac{1}{2 m+1}}

\tan (\alpha+\beta)=\frac{\frac{m(2 m+1)+m+1}{(m+1)(2 m+1)}}{\frac{(m+1)(2 m+1)-m}{(m+1)(2 m+1)}}

\tan (\alpha+\beta)=\frac{2 m^{2}+2 m+1}{2 m^{2}+2 m+1}

\tan (\alpha+\beta)=\tan \frac{\pi}{4}

\alpha+\beta=\frac{\pi}{4}

Question 15

यदि(If) A+B=45° , साबित करे कि
Show that
(cotA-1)(cotB-1)=2
Sol :
A+B=45°
Taking cot both sides

cot(A+B)=cot45°

\frac{\cot A \cot B -1}{\cot A+\cot B}=1

cotAcotB-1=cotA+cotB

cotAcotB-cotA-cotB-1=0

cotAcotB-cotA-cotB+1-2=0

cotA(cotB-1)-1(cotB-1)=2

(cotA-1)(cotB-1)=2

Question 16

यदि (If) \tan \alpha-\tan \beta=x and \cot \beta-\cot \alpha=y
साबित करे(prove that)
\cot (\alpha-\beta)=\frac{x+y}{x y}
Sol :
\tan \alpha-\tan \beta=x

\frac{\sin \alpha}{\cos \alpha}-\frac{\sin \beta}{\cos \beta}=x

\frac{\sin \alpha \cos \beta-\operatorname{cos} \alpha \sin \beta}{\cos \alpha \cos \beta}=x

\frac{\sin (\alpha-\beta)}{\cos \alpha \cos \beta}=x

\frac{\cos \alpha \cos \beta}{\sin (\alpha-\beta)}=\frac{1}{x}..(i)

cotβ-cotα=y

\frac{\cos \beta}{\sin \beta}-\frac{\cos \alpha}{\sin \alpha}=y

\frac{\sin \alpha \cos \beta-\cos \alpha \sin \beta}{\sin \beta \sin \alpha}=y

\frac{\sin (\alpha-\beta)}{\sin \alpha \sin \beta}=y

\frac{\sin \alpha \sin \beta}{\sin (\alpha-\beta)}=\frac{1}{y}..(ii)

समीकरण (i) तथा (ii) को जोडने पर,
On adding (i) and (ii) ,

\frac{\cos \alpha \cos \beta}{\sin(\alpha-\beta)}+\frac{\sin \alpha \sin \beta}{\sin (\alpha-\beta)}=\frac{1}{x}+\frac{1}{y}

\frac{\cos \alpha \cos \beta+\sin \alpha \sin \beta}{\sin (\alpha-\beta)}=\frac{y+x}{xy}

\frac{\cos (\alpha-\beta)}{\sin (\alpha-\beta)}=\frac{x+y}{x y}

\operatorname{cot}(\alpha-\beta)=\frac{x+y}{x y}

Question 17

यदि एक समकोण तीन भागो 𝛼,ꞵ और 𝛾 मे विभाजित किया जाय तो साबित केर कि
(If a right angle be divided into three parts 𝛼,ꞵ and  𝛾 prove that)
\cot \alpha=\frac{\tan \beta+\tan \gamma}{1-\tan \beta \tan \gamma}
Sol :
α+β+ɣ=90°

β+ɣ=90°-α

taking both side tan

tan(β+ɣ)=tan(90°-α)

\frac{\tan \beta+\tan \gamma}{1-\tan \beta \tan \gamma}=\cot \alpha

Question 18

यदि(If) 2 \tan \beta+\cot \beta=\tan \alphaतो साबित करे(show that)
\cot \beta=2 \tan (\alpha-\beta)
Sol :
2 \tan \beta+\cot \beta=\tan \alpha

\tan \beta+\cot \beta=\tan \alpha-\tan \beta

\frac{\sin \beta}{\cos \beta}+\frac{\cos \beta}{\sin \beta}=\frac{\sin \alpha}{\cos \alpha}-\frac{\sin \beta}{\cos \beta}

\frac{\sin ^{2} \beta+\cos ^{2} \beta}{\cos \beta \sin \beta}=\frac{\sin \alpha \cos \beta-\cos \alpha \sin \beta}{\cos \alpha \cos \beta}

\frac{1}{\sin \beta}=\frac{\sin (\alpha-\beta)}{\cos \alpha}..(i)

Again,(पुनः)

2 \tan \beta+\operatorname{cot} \beta=\tan \alpha

Adding both side \cot \beta

2 \tan \beta+2 \cot \beta=\tan \alpha+\cot \beta

2(\tan \beta+\cot \beta=\tan \alpha+\cos \beta

2\left(\frac{\sin \beta}{\cos \beta}+\frac{\cos \beta}{\sin \beta}\right)=\frac{\sin \alpha}{\cos \alpha}+\frac{\cos \beta}{\sin \beta}

2\left(\frac{\sin ^{2} \beta+\cos ^{2} \beta}{\cos \beta \sin \beta}\right)=\frac{\sin \alpha \sin \beta+\cos \alpha \cos \beta}{\cos \alpha \sin \beta}

\frac{2}{\cos \beta}=\frac{\cos (\alpha-\beta)}{\cos \alpha}..(ii)

समीकरण (i) मे (ii) से भाग देने पर
Dividing (i) by (ii)

=\frac{\frac{1}{\sin \beta}}{\frac{2}{\cos \beta}}=\frac{\frac{\sin (\alpha-\beta)}{\cos \alpha}}{\frac{\cos (\alpha-B)}{\cos \alpha}}

\frac{\cos \beta}{2 \sin \beta}=\tan (\alpha-\beta)

\cot\beta=2 \tan (\alpha-\beta)

Question 19

किसी ΔABC , मे C=90° , तो साबित करे कि
(If in any \Delta \mathrm{ABC}, \mathrm{C}=90^{\circ} prove that)
\operatorname{cosec}(A-B)=\frac{a^{2}+b^{2}}{a^{2}-b^{2}} (और)and $\sec (A-B)=\frac{c^{2}}{2 a b}
जहाँ A,B,C तीनो कोण है तथा a,b,c संगत भुजाएँ है ।
Sol :
Diagram

\operatorname{cosec}(A-B)=\frac{1}{\sin (A-B)}

=\frac{1}{\sin A \cos B-\cos A+\sin B}

=\frac{1}{\frac{a}{c} \times \frac{a}{c}-\frac{b}{c} \times \frac{b}{c}}

=\frac{1}{\frac{a^{2}}{c^{2}}-\frac{b^{2}}{c^{2}}}

=\frac{1}{\frac{a^{2}-b^{2}}{c^{2}}}

\operatorname{cosec}(A-B)=\frac{c^{2}}{a^{2}-b^{2}}

\text{cosec }(A-B)=\frac{a^{2}+b^{2}}{a^{2}-b^{2}}


Question 19

किसी ΔABC , मे C=90° , तो साबित करे कि
(If in any \Delta \mathrm{ABC}, \mathrm{C}=90^{\circ} prove that)
\operatorname{cosec}(A-B)=\frac{a^{2}+b^{2}}{a^{2}-b^{2}} (और)and $\sec (A-B)=\frac{c^{2}}{2 a b}
जहाँ A,B,C तीनो कोण है तथा a,b,c संगत भुजाएँ है ।
Sol :

[c^{2}=a^{2}+b^{2}]

\sec (A-B)=\frac{1}{\cos (A-B)}

=\frac{1}{\cos A \cos B+\sin A \sin B}

=\frac{1}{\frac{b}{c} \times \frac{a}{c}+\frac{a}{c} \times \frac{b}{c}}

=\frac{1}{\frac{a b}{c^{2}}+\frac{a b}{c^{2}}}

=\frac{1}{\frac{2 a b}{c^{2}}}

\sec (A-B)=\frac{C^{2}}{2 a b}

=\frac{1}{\frac{b}{c} \times \frac{a}{c}+\frac{a}{c} \times \frac{b}{c}}

=\frac{1}{\frac{a b}{c^{2}}+\frac{a b}{c^{2}}}

=\frac{1}{\frac{2 a b}{c^{2}}}

\sec (A-B)=\frac{C^{2}}{2 a b}

Question 20

यदि(If) \cot A=\sqrt{a c}\cot B=\sqrt{\frac{c}{a}}, \tan C=\sqrt{\frac{c}{a^{3}}} and c=a^{2}+a+1
साबित करे(prove that)
A+B=C
Sol :
\tan A=\frac{1}{\sqrt{a{c}}}\tan B=\sqrt{\frac{a}{c}}  , \tan c=\sqrt{\frac{c}{a^{3}}} ,c=a^{2}+a+1

\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}

=\frac{\frac{1}{\sqrt{a c}}+\sqrt{\frac{a}{c}}}{1-\frac{1}{\sqrt{a{c}}} \times \sqrt{\frac{a}{c}}}

\tan (A+B)=\frac{\frac{1+a}{\sqrt{a c}}}{\frac{\sqrt{a} \cdot c-\sqrt{a}}{\sqrt{a{c}} \cdot \sqrt{c}}}

\tan (A+B)=\frac{\sqrt{c}(1+a)}{\sqrt{a}(c-1)}

\left(\because C=a^{2}+a+1\right)

\tan (A+B)=\frac{\sqrt{c}(1+a)}{\sqrt{a}\left(a^{2}+a\right)}

\tan (A+B)=\frac{\sqrt{c}(1+a)}{\sqrt{a} \cdot a(a+1)}

\tan (A+B)=\frac{\sqrt{c}}{\sqrt{a^{3}}}

\tan (A+B)=\sqrt{\frac{c}{a^{3}}}

tan(A+B)=tan C

A+B=C

Question 21

यदि(If) \frac{\tan (\mathrm{A}-\mathrm{B})}{\tan \mathrm{A}}+\frac{\sin ^{2} \mathrm{C}}{\sin ^{2} \mathrm{A}}=1तो साबित करे कि(prove that)
tanA.tanB=\tan ^{2} C
Sol :
\frac{\tan (\mathrm{A}-\mathrm{B})}{\tan \mathrm{A}}+\frac{\sin ^{2} \mathrm{C}}{\sin ^{2} \mathrm{A}}=1

\frac{\sin ^{2} C}{\sin^{2} A}=\frac{\tan (A-B)}{\tan A}

\frac{\sin ^{2} C}{\sin ^{2} A}=\frac{\tan A-\tan (A-B)}{\tan A}

\frac{\sin ^{2} C}{\sin ^{2} A}=\frac{\frac{\sin A}{\cos A}-\frac{\sin (A-B)}{\cos (A-B)}}{\frac{\sin A}{\cos A}}

\frac{\sin ^{2} C}{\sin ^{2} A}=\frac{\frac{\sin A \cos (A-B)-\cos A\sin(A-B)}{\cos A \cos (A-B)}}{\frac{\sin A}{\cos A}}

\frac{\sin ^{2} C}{\sin ^{2} A}=\frac{\sin [A-(A-B)]}{\sin A \cos (A-D)}

\frac{\sin ^{2} C}{\sin A}=\frac{\sin (A-A+B)}{\cos (A-B)}

\sin ^{2} C \cos (A-B)=\sin A \sin B..(i)

\left[1-\cos ^{2} C\right) \cos (A-B)=\sin A \sin B

\cos (A-B)-\operatorname{\cos}^{2} C\cos (A-B)=\sin A \sin B

\cos (A-B)-\sin A \sin B=\cos ^{2} C \cos (A-B)

coaAcosB+sinAsinB-sinAsinB=\cos^2 C cos(A-B)

\cos ^{2} C \cos (A-B)=\cos A \cos B..(ii)

समीकरण (i) मे (ii) से भाग देने पर
On dividing (i) by (ii)

\frac{\sin ^{2} C \cos ( A-B )}{\cos ^{2} C \cos (A-B)}=\frac{\sin A \sin B}{\cos A \cos B}

\tan ^{2}C=tanA.tanB

Question 22

यदि(If) \sin \alpha \sin \beta-\cos \alpha \cos \beta=1साबित करे(show that)
\tan \alpha+\tan \beta=0
Sol :
\sin \alpha \sin \beta-\cos \alpha \cos \beta=1

-1=\cos \alpha \cos \beta-\sin \alpha\sin \beta

-1=\cos (\alpha + \beta)

\sin (\alpha+\beta)=\sqrt{1-\cos ^{2}(\alpha+\beta)}

=\sqrt{1-(-1)^{2}}

=\sqrt{1-1}=0

L.H.S
\tan \alpha+\tan \beta=\frac{\sin \alpha}{\cos \alpha}+\frac{\sin \beta}{\cos \beta}

=\frac{\sin \alpha \cos \beta+\cos \alpha \sin \beta}{\cos \alpha \cos \beta}

=\frac{\sin (\alpha+B)}{\cos \alpha \cos \beta}

=\frac{0}{\cos \alpha \cos \beta}=0


Question 23

यदि(If) sinθ=3sin(θ+2α) तो साबित करे(prove that)
tan(θ+α)+2tanα=0
Sol :
sinθ=3sin(θ+2α)

\sin [(\theta+\alpha)-\alpha]=3 \sin ((\theta+\alpha)+\alpha]

sin(θ+α).cosα-cos(θ+α)sinα=3[sin(θ+α)cosα+cos(θ+α)sinα]

sin(θ+α)cosα-cos(θ+α)sinα=3sin(θ+α)cosα+3cos(θ+α)sinα

sin(θ+α)cosα-3sin(θ+α)cosα=cos(θ+α)sinα+3cos(θ+α)sinα

-2sin(θ+α)cosα=4cos(θ+α)sinα

\frac{\sin (\theta+\alpha)}{\cos (\theta+\alpha)}=\frac{4 \sin \alpha}{-2 \cos \alpha}

tan(θ+α)=-2tanα

tan(θ+α)+2tanα=0

Question 24

यदि(If) mtan(θ-30°)=ntan(θ-120°)तो साबित करे(show that)
\cos 2 \theta=\frac{m+n}{2(m-n)}
Sol :
Componando and dividendo

If \frac{a}{b}=\frac{c}{d} , then

\frac{a+b}{a-b}=\frac{c+d}{c-d} or  \frac{a-b}{a+b}=\frac{c-d}{c+d}

Proof :
\frac{a}{b}=\frac{c}{d}

दोनो तरफ 1 जोडने पर
Adding both sides 1

\frac{a}{b}+1=\frac{c}{d}+1

\frac{a+b}{b}=\frac{c+d}{d}..(i)

(पुनः)
Again,\frac{a}{b}=\frac{c}{d}

दोनो तरफ 1 घटाने पर
Subtracting both sides 1

\frac{a}{b}-1=\frac{c}{d}-1

\frac{a-b}{b}=\frac{c-d}{d}..(ii)

समीकरण (i) मे (ii) से भाग देने पर
Dividing (i) by (ii)

\frac{\frac{a+b}{b}}{\frac{a-b}{b}}=\frac{\frac{c+d}{d}}{\frac{c-d}{d}}

\frac{a+b}{a-b}=\frac{c+d}{c-d} or \frac{a-b}{a+b}=\frac{c-d}{c+d}

Question 24

यदि(If) m \tan \left(\theta-30^{\circ}\right)=n \tan \left(\theta+120^{\circ}\right)साबित करे(show that)
\cos 2 \theta=\frac{m+n}{2(m-n)}
Sol :
m \tan \left(\theta-30^{\circ}\right)=n \tan \left(\theta+120^{\circ}\right)

\frac{m}{n}=\frac{\tan (\theta+120^{\circ})}{\tan (\theta-30^{\circ})}

Componando and dividendo

\frac{m+n}{m-n}=\frac{\tan (\theta+120^{\circ})+\tan (\theta-30^{\circ})}{\tan (\theta+120^{\circ})-\tan (\theta-30^{\circ})}

\frac{m+n}{m-n}=\frac{\frac{\sin (\theta+120^{\circ})}{\cos (\theta+120^{\circ})}+\frac{\tan (\theta-30^{\circ})}{\cos (\theta-30^{\circ})}}{\frac{\sin (\theta+120^{\circ})}{\cos (\theta+120^{\circ})}-\frac{\sin (\theta-30^{\circ})}{\cos (\theta-30^{\circ})}}

\frac{m+n}{m-n}=\dfrac{\frac{\sin (\theta+120^{\circ}) \cos (\theta-30^{\circ})+\cos (\theta+120^{\circ}) \tan (\theta-30^{\circ})}{\cos (\theta+120^{\circ}) \cos (\theta-30^{\circ})}}{\frac{\sin \left(\theta+120^{\circ}\right) \cos (\theta-30^{\circ})-\cos (\theta+120^{\circ}) \sin (\theta-30^{\circ})}{\cos (\theta+120^{\circ}) \cos (\theta-30^{\circ})}}

\frac{m+n}{m-n}=\frac{\sin [(\theta+120^{\circ})+(\theta-30^{\circ})]}{\sin [(\theta+120^{\circ})-(\theta-30^{\circ})]}

\frac{m+n}{m-n}=\frac{\sin [\theta+120^{\circ}+\theta-30^{\circ}]}{\sin [\theta+120^{\circ}-\theta+30^{\circ}]}

\frac{m+n}{m-n}=\frac{\sin (90^{\circ}+2 \theta)}{\sin 150^{\circ}}

\frac{m+n}{m-n}=\frac{\cos 2 \theta}{\sin (180^{\circ}-30^{\circ})}

\frac{m+n}{m-n}=\frac{\cos 2 \theta}{\sin 30^{\circ}}

\frac{m+n}{m-n}=\frac{\cos 2 \theta}{\frac{1}{2}}

\frac{m+n}{m-n}=2 \cos 2 \theta

\frac{m+n}{2(m-n)}=\cos 2 \theta

Question 25

यदि(If) \alpha+\beta=\theta (तथा)and \tan \alpha: \tan \beta=x: y(साबित करे)prove that
\sin (\alpha-\beta)=\frac{x-y}{x+y} \sin \theta
Sol :
\frac{\tan \alpha}{\tan \beta}=\frac{x}{y}

By Componendo and Dividendo

\frac{\tan \alpha-\tan \beta}{\tan \alpha+\tan \beta}=\frac{x-y}{x+y}

\frac{\frac{\sin \alpha}{\cos \alpha}-\frac{\sin \beta}{\cos \beta}}{\frac{\sin \alpha}{\cos \alpha}+\frac{\sin \beta}{\cos \beta}}=\frac{x-y}{x+y}

\dfrac{\frac{\sin \alpha \cos \beta-\cos \alpha \sin \beta}{\cos \alpha \cos \beta}}{\frac{\sin \alpha \cos \beta+\cos \alpha \sin \beta}{\cos \alpha \cos \beta}}=\frac{x-y}{x+y}

\frac{\sin (\alpha-\beta)}{\sin (\alpha+\beta)}=\frac{x-y}{x+y}

\frac{\sin (\alpha-\beta)}{\sin \theta}=\frac{x-y}{x+y}
(\because \alpha+\beta=\theta)

\sin (\alpha-\beta)=\frac{x-y}{x+y} \sin \theta

Question 26

साबित करे(Show that) sin100°-sin10° (धनातमक है)is positive
Sol :
sin100°-sin10°=sin(90°+10°)-sin10°

=cos10°-sin10°

=\sqrt{2} \cdot \frac{1}{\sqrt{2}}(\cos 10^{\circ}-\sin 10^{\circ})

=\sqrt{2}\left(\frac{1}{\sqrt{2}} \cos 10^{\circ}-\frac{1}{\sqrt{2}} \sin 10^{\circ}\right)

=\sqrt{2} (\cos 45^{\circ} \cos 10^{\circ}-\sin 45^{\circ} \sin 10^{\circ})

=\sqrt{2} \cos (45+10)

=\sqrt{2} \cos 55^{\circ}>0


Question 27

7cosθ+24sinθ का महतम और न्यूनतम मान निकाले।
Find the maximum and minimum values of 7cosθ+24sinθ
Sol :
(माना)Let 7=rsinx , 24=rcosx

दोनो को वर्ग करके जोड़ने पर
On squaring and then adding them

7^{2}+24^{2}=r^{2} \sin ^{2} x+r^{2} \cos ^{2} x

49+576=r^{2}\left(\sin ^{2} x+\cos ^{2} x\right)

625=r^{2}

\sqrt{625}=r

25=r

7cosθ+24sinθ=rsinx.cosθ+rcosx.sinθ

=r(sinx.cosθ+cosx.sinθ)

=rsin(x+θ)

=25sin(x+θ)

\because-1 \leq \sin (x+\theta) \leq 1

25 से गुणा करने पर,
Multiplying with 25

-25 \leq 25\sin(x+8) \leq 25

न्यूनतम मान
Minimum value=-25

महतम मान
Maximum value=25

2 comments:

Contact Form

Name

Email *

Message *