Page 3.19
Exercise 3.2
Question 1
Fill up the blanks :(i) When x2+2x-3 is divided by (x-1) , remainder = __
Sol :
Divisor=x-1
Zero of x-1 is 1
∴ By remainder theorem ,
Remainder=p(1)=(1)2+2(1)-3
=1+2-3
=0
(ii) If (x-2) is a factor of the polynomial p(x) , then p(2)= __
Sol :
⇒By factor theorem : Let p(x) be a polynomial in x of degree n≥1 and let a be any real number , then (x-a) is a factor of p(x) if and only if p(a)=0
⇒It is already given that (x-2) is factor of p(x) then according to theorem , p(2)=0
Question 2
What will be the remainder when y4-3y2+2y+1 is divided by (y-1) ?Sol :
Divisor=y-1
Zero of y-1 is 1
∴ By remainder theorem ,
Remainder=p(1)=(1)4-3(1)2+2(1)+1
=1-3+2+1
=4-3
=1
Question 3
What will be the remainder when x2+4x+2 is divided by (x+2) ?Sol :
Divisor=x+2
Zero of x+2 is -2
∴ By remainder theorem ,
Remainder=p(-2)=(-2)2+4(-2)+2
=4-8+2
=-2
Question 4
If for polynomial p(x) , p(-1)=3 , then what will be the remainder when p(x) is divided by (x+1) ?Sol :
x+1=0
x=-1
=3
Question 5
If for polynomial p(x) , $p\left(-\dfrac{2}{3}\right)=0$ , then write a factor of polynomial p(x)Sol :
$x=-\frac{2}{3}$
3x=-2
3x+2=0
3x+2
Question 6
If for polynomial p(x), p(-3)=0 , then write a factor of polynomial p(x).Sol :
x=-3 , p(-3)=2
p(x)-2=p(-3)-2
=2-2
=0
x=-3
x+3=0
x+3
Question 7
Find the remainder when x3 + 3x2 + 3x + 1 is divided by(i) x+1
Sol :
p(x)=x3+3x2+3x+1
x+1=0
x=-1
p(-1)=(-1)3+3(-1)2+3(1)+1
=-1+3-3+1
=0
(ii) $x-\dfrac{1}{2}$
Sol :
$x-\frac{1}{2}=0$
$x=\frac{1}{2}$
$p\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^3+3\left(\frac{1}{2}\right)^2+3\left(\frac{1}{2}\right)+1$
$=\frac{1}{8}+\frac{3}{4}+\frac{3}{2}+1$
$=\frac{1+6+12+8}{8}=\frac{27}{8}$
Question 8
(i) Find the remainder when x3+1 is divided by x + 1Sol :
0
(ii) Find the remainder when x4+x3-2x2+x+1 is divided by x-1
Sol :
2
(iii) Find the remainder when x3-ax2+6x-a is divided by x - a.
Sol :
5a
Question 9
If p(x) = x4 - 3x3 + 2x + 1 , then using remainder theorem, find the remainder when p(x) is divided by :(i) x-2
Sol :
9
(ii) x-4
Sol :
217
Question 10
If p(x)=4x3-3x2+2x-4 , then using remainder theorem, find the remainder when p(x) is divided by :(i) x-1
Sol :
-1
(ii) x+1
Sol :
-13
Question 11
If p(x)=x2+4x+2 , then what will be the remainder when p(x) is divided by x+2 ?Sol :
-2
Question 12
Using factor theorem determine whether x-1 is a factor of the following:(i) x3+x2-2x+1
Sol :
x-1=0
x=1
p(x)=x3+x2-2x+1
p(1)=13+12-2(1)+1
=1+1-2+1
=1
No
(ii) 8x4-12x3+18x+14
Sol :
No
(iii) x3+8x2-7x-2
Sol :
Yes
(iv) $2\sqrt{2}x^3+5\sqrt{2}x^2-7\sqrt{2}$
Sol :
x-1=0
x=1
p(x)=$2\sqrt{2}x^3+5\sqrt{2}x^2-7\sqrt{2}$
p(1)=$2\sqrt{2}(1)^3+5\sqrt{2}(1)^2-7\sqrt{2}$
=2√2+5√2-7√2
=0
Question 13
Use factor theorem to determine whether g(x) is a factor of p(x) in each of the following cases :(i) p(x)=2x3+x2-2x-1 , g(x)=x+1
Sol :
x+1=0
x=-1
p(-1)=2(-1)3+(-1)2-2(-1)-1
=-2+1+2-1
=0
Yes
(ii) p(x)=x3+3x2+3x+1 , g(x)=x+2
Sol :
No
(iii) p(x)=x3-4x2+x+6 , g(x)=x-3
Sol :
Yes
Question 14
(i) Examine whether 7 + 3x is a factor of 3x3 + 7x.Sol :
7+3x=0
3x=-7
$x=\frac{-7}{3}$
p(x)=3x3+7x
$p\left(\frac{-7}{3}\right)=3\left(\frac{-7}{3}\right)^3+7\left(\frac{-7}{3}\right)$
$=3\left(\frac{-343}{7}\right)-\frac{49}{3}$
$=\frac{-343}{9}-\frac{49}{3}$
No
(ii) Examine whether x+2 is a factor of the polynomials x3+3x2+5x+6 and 2x+4
Sol :
x+2=0
x=-2
p(x)=x3+3x2+5x+6 , g(x)=2x+4
p(-2)=(-2)3+3(-2)2+5(-2)+6
=-8+12-10+6
=-18+18
=0
x+2, p(x) का गुणनखण्ड है ।
g(-2)=2(-2)+4
=-4+4
=0
Yes
(iii) Examine whether q(t)=4t3+4t2-t-1 is a multiple of 2t+1
Sol :
2t+1
2t=-1
$t=-\frac{1}{2}$
$q\left(-\frac{1}{2}\right)=4\left(-\frac{1}{2}\right)^2-\left(-\frac{1}{2}\right)-1$
$=4\left(-\frac{1}{8}\right)+4\left(\frac{1}{4}\right)+\frac{1}{2}+1$
$=-\frac{1}{2}+1+\frac{1}{2}-1$
=0
Yes
Question 15
Using factor theorem, determine whether g(x) is a factor of p(x) in the following pair of polynomials :(i) p(x)=x3-3x2+2x-12 and g(x)=x-2
Sol :
No
(ii) p(x)=x3+x2+3x+175 and g(x)=x+5
Sol :
No
(iii) p(x)=2x3+4x2-5x-10 and g(x)=x+2
Sol :
Yes
(iv) $p(x)=2\sqrt{2}x^2+5x+\sqrt{2}$ and g(x)=x+√2
Sol :
g(x)=x+√2
x+√2=0
x=-√2
$p(x)=2\sqrt{2}x^2+5x+\sqrt{2}$
$=2\sqrt{2}(-\sqrt{2})^2+5(-\sqrt{2})+\sqrt{2}$
=4√2-5√2+√2
=5√2-5√2
=0
Yes
Question 16
Using factor theorem, show that x3-6x2+11x-6 is divided by x-1Sol :
Question 17
(a) In the following polynomials if x- 2 is a factor of each polynomial, then find the value of a in each case :(i) x2-3x+5a
Sol :
2/5
(ii) x3-2ax2+ax-1
Sol :
7/6
(b) If x-1 is a factor of polynomial ax3-4ax+4a-1 , find the value of a
Sol :
1
(c) In the following polynomial if x+a is a factor of each polynomial , find the value of a in each case.
(i) x3+ax2-2x+a+4
Sol :
-4/3
(ii) x4-a2x2+3x-a
Sol :
0
Question 18
If p(x)=x3+kx2+hx+6 and x+1 and x-2 are factors of p(x) , then find the value of h and kSol :
h=1 , k=-4
Question 19
If p(x)=x4-5x3+4x2+ax+b and x-1 and x-2 are factors of p(x) , find the values of a and bSol :
a=8, b=-8
Question 20
If x-1 and x+3 are factors of polynomial f(x)=x2-hx2-13x+k , find the values of h and kSol :
h=3 , k=15
Question 21
If (x-1) and (x-4) are factors of polynomials p(x)=(x2-3x+2)(x2+7x+a) and q(x)=(x2+5x+4)(x2-5x+b) , find the values of a and bSol :
a=12 , b=4
Question 22
If f(x)=x2+px+q , g(x)=x2+lx+m and each is divisible by x+a , then prove that $a=\dfrac{m-q}{l-p}$Sol :
question no.21
ReplyDeletei need solution
please
Delete