KC Sinha Mathematics Solution Class 9 Chapter 4 Algebraic identities exercise 4.5

Page 4.34

Exercise 4.5


Type 1
Problems based on factorization of algebraic expressions, expressible asthe sum or difference of two cubes.
WORKING RULE:
1. if in the given expression, any factor is common in each term , thentake out the common factors.
Now , use the following identities whichever is required
x3+y3=(x+y)(x2-xy+y2)
x3-y3=(x-y)(x2+xy+y2)
2. Replace y be in x3+y3 to get x3-y3


Q1 | Ex-4.5 | Class 9 |Algebraic Identities | KC SINHA Mathematics |myhelper

Question 1

a3+27b3
Sol:
⇒(a)3+(3b)3
Using identity:
x3+y3=(x+y)(x2-xy+y2)
⇒(a+3b)[a2-(a)(3b)+(3b)2]
⇒(a+3b)(a2-3ab+9b2)

Q2 | Ex-4.5 | Class 9 |Algebraic Identities | KC SINHA Mathematics |myhelper

Question 2

x3+125
Sol:
⇒x3+53
Using identity:
x3+y3=(x+y)(x2-xy+y2)
⇒(x+5)[x2-(x)(5)+52]
⇒(x+5)(x2-5x+25)

Q3 | Ex-4.5 | Class 9 |Algebraic Identities | KC SINHA Mathematics |myhelper

Question 3

8a3+27b3
Sol:
⇒(2a)3+(3b)3
Using identity:
x3+y3=(x+y)(x2-xy+y2)
⇒(2a+3b)[(2a)2-(2a)(3b)+(3b)2]
⇒(2a+3b)(4a2+9b2-6ab)

Q4 | Ex-4.5 | Class 9 |Algebraic Identities | KC SINHA Mathematics |myhelper

Question 4

x5+27x2
[Hint: x5+27x2=x2(x3+27)]
Sol:
[Taking common x2]
⇒x2(x3+27)
⇒x2(x3+33)
Using identity:
x3+y3=(x+y)(x2-xy+y2)
⇒x2(x+3)(x2-3x+32)
⇒x2(x+3)(x2-3x+9)

Q5 | Ex-4.5 | Class 9 |Algebraic Identities | KC SINHA Mathematics |myhelper

Question 5

ab7+ba7
[Hint:ab7+ba7=ab(a6+b6)=ab[(a2)3+(b2)3]]
Sol:
[Taking common ab]
⇒ab(b6+a6)
⇒ab[(b2)3+(a2)3]
⇒ab[(a2)3+(b2)3]
Using identity:
x3+y3=(x+y)(x2-xy+y2)
⇒ab[(a2+b2)][(a2)2-(a2)(b2)+(b2)2]
⇒ab(a2+b2)(a4-a2b2+b4)

Q6 | Ex-4.5 | Class 9 |Algebraic Identities | KC SINHA Mathematics |myhelper

Question 6

8(a+b)3 + 27(b+c)3
Sol:
[Hint: Given expression {2(a+b)}]3+{3(b+c)}3
={2(a+b)+3(b+c)}{4(a+b)2-6(a+b)(b+c)+9(b+c)2}
=(2a+5b+3c){(a+b)(4a+4b-6b-6c)+9(b2+c2+2bc)}
=(2a+5b+3c){(a+b)(4a-2b-6c)+9b2+9c2+18bc}
=(2a+5b+3c)(4a2+7b2+9c2+2ab+12bc-6ac)


Q7 | Ex-4.5 | Class 9 |Algebraic Identities | KC SINHA Mathematics |myhelper

Question 7

$125x^3+\dfrac{1}{8}$
Sol:
⇒$5x^3+\left(\dfrac{1}{2}\right)^3$
Using identity:
x3+y3=(x+y)(x2-xy+y2)
⇒$\left(5x+\dfrac{1}{2}\right)$$+(5x)^2-(5x)\left(\dfrac{1}{2}\right)+\left(\dfrac{1}{2}\right)^2$
⇒$\left(5x+\dfrac{1}{2}\right)$$+\left(25x^2-\dfrac{5}{2}x+\dfrac{1}{4}\right)$

Q8 | Ex-4.5 | Class 9 |Algebraic Identities | KC SINHA Mathematics |myhelper

Question 8

a3+b3+a+b
Sol:
⇒a3+b3+a+b
Using identity:
x3+y3=(x+y)(x2-xy+y2)
⇒(a+b)(a2-ab+b2)+(a+b)
[Taking common (a+b)]
⇒(a+b)[(a2-ab+b2)+1]
⇒(a+b)(a2-ab+b2+1)

Q9 | Ex-4.5 | Class 9 |Algebraic Identities | KC SINHA Mathematics |myhelper

Question 9

x3+y3+2x2-2y2
Sol:
⇒(x3+y3)+2(x2-y2)
Using identity:
x3+y3=(x+y)(x2-xy+y2)
⇒[(x+y)(x2-xy+y2)]+2(x2-y2)
Using identity:
a2-b2=(a+b)(a-b)
⇒(x+y)(x2-xy+y2)+2(x+y)(x-y)
[Taking common (x+y)]
⇒(x+y)[(x2-xy+y2)+2(x-y)]
⇒(x+y)[x2-xy+y2+2x-2y]
⇒(x+y)(x2+y2-xy+2x-2y)

Q10 | Ex-4.5 | Class 9 |Algebraic Identities | KC SINHA Mathematics |myhelper

Question 10

64x3-27y3
Sol:
⇒64x3-27y3
⇒(4x)3-(3y)3
Using identity:
x3-y3=(x-y)(x2+xy+y2)
⇒(4x-3y)[(4x)2-(4x)(3y)+(3y)2]
⇒(4x-3y)(16x2+12xy+9y2)


Q11 | Ex-4.5 | Class 9 |Algebraic Identities | KC SINHA Mathematics |myhelper

Question 11

(a+b)3-(2)3
[Hint: Given expression=(a+b-2)[(a+b)2+2(a+b)+4]]
Sol:
Using identity:
x3-y3=(x-y)(x2+xy+y2)
⇒(a+b-2)[(a+b)2+2(a+b)+22]
$=(a+b-2)\left(a^{2}+b^{2}+2 a b+2^{2}+2 a+2 b\right]$
$=(a+b-2)\left(a^{2}+b^{2}+4+2 a+2 b\right)$


Q12 | Ex-4.5 | Class 9 |Algebraic Identities | KC SINHA Mathematics |myhelper

Question 12

x3y3-512
[Hint: Given expression =(xy)3-(8)3 ]
Sol :
⇒(xy)3-83
Using identity:
x3-y3=(x-y)(x2+xy+y2)
⇒(xy-8)[(xy)2+(8)(xy)+(8)2]
⇒(xy-8)(x2y2+8xy+64)

Q13 | Ex-4.5 | Class 9 |Algebraic Identities | KC SINHA Mathematics |myhelper

Question 13

$a^3-\dfrac{27}{a^3}$
Sol :
Expression$=a^3-\left(\dfrac{3}{a}\right)^3$
Using identity:
x3-y3=(x-y)(x2+xy+y2)
$=\left(a-\dfrac{3}{a}\right)\left(a^2+a.\dfrac{3}{a}+\dfrac{9}{a^2}\right)$
⇒$\left(a-\dfrac{3}{a}\right)$$+\left(a^2+a\dfrac{3}{a}+\dfrac{9}{a^2}\right)$

Page 4.35

Type 2
Problems based on the identity:
a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)
Category A: Problems based on factorization of thepolynomials of the form a3+b3+c, whena+b+c=0
WORKING RULE:
Find the algebric sum of the terms. If it is zero, then required factors willbe 3×product of three terms.
Thus if a+b+c=0 , then a3+b3+c3=3abc

Category B: Problems based on factorization of thepolynomials of the forma3+b3+c-3abc
WORKING RULE:
1. If polynomial is of the forma3+b3+c-3abc , then use identitya3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)
2. If polynomial can be converted in the forma3+b3+c-3abc , then convert the givenexpression in this form and then factorize.
3. Use the following formulae whichever is required :
(i)a2+b2+c2-ab-bc-ca=1/2{(a-b)2+(b-c)2+(c-a)2}
(ii)(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
(iii)a3+b3+c3=(a+b+c)3-3(a+b)(b+c)(c+a)
(iv)(a+b+c)3-a3-b3-c3=3(a+b)(b+c)(c+a)

Q14 | Ex-4.5 | Class 9 |Algebraic Identities | KC SINHA Mathematics |myhelper

Question 14

Fill up the blanks.

(i) If x+y+z=0 , factors of x3+y3+z3 willbe __
Sol :
Using identity :
⇒x3+y3+z3-3xyz=(x+y+z)(x2+y2+z2-xy-yz-zx)
[Given x+y+z=0]
⇒x3+y3+z3-3xyz=(0
)(x2+y2+z2-xy-yz-zx)
⇒x3+y3+z3-3xyz=0
⇒x3+y3+z3=3xyz
∴ Factors of x3+y3+z3 is
⇒3xyz

(ii) Factors of (a-b)3+(b-c)3+(c-a)3 willbe __
Sol :
⇒(a-b)3+(b-c)3+(c-a)3
Using identity :
⇒a3+b3+c3=(a+b+c)3-3(a+b)(b+c)(c+a)
where a=(a-b) , b=(b-c) , c=(c-a)
⇒[(a-b)+(b-c)+(c-a)]-3[(a-b)+(b-c)][(b-c)+(c-a)][(c-a)+(a-b)]
⇒[a-b+b-c+c-a]-3[a-b+b-c][b-c+c-a][c-a+a-b]
⇒[0]-3[a-c][b-a][c-b]
⇒3(a-b)(c-a)(b-c)
⇒3(a-b)(b-c)(c-a)

(iii) Factors of (2a-3b)3+(3b-c)3+(c-2a)3will be __
Sol :

$=[2 a-3 b+3 b-c+c-2 a]^{3}-3(2 a-3 b+3 b-c)(3b-c+c-2a)(c-2a+2a-3b)$
=-3(2 a-c)(3 b-2 a)(c-3 b)
=-3×-1×-1×-1×(2a-3b)(3b-c)(c-2a)
⇒3(2a-3b)(3b-c)(c-2a)

(iv) Factors of (a+b+c)3+(a-b-c)3-8a3 willbe __
[Hint: Given expression=(a+b+c)3+(a-b-c)3+(-2a)3]
Let x=a+b+c , y=a-b-c and z=-2a
Then , x+y+z=(a+b+c)+(a-b-c)-2a=0
⇒x3+y3+z3=3xyz
⇒(a+b+c)3+(a-b-c)3-8a3
⇒3(a+b+c)(a-b-c)(-2a)
⇒-6a(a+b+c)(a-b-c)
⇒6a(a+b+c)(b+c-a)

(v) If p=2-a, prove that a3+p3-8+6ap=0

[Hint: We have, p=2-a]
⇒a+p-2=0
Let x=a , y=p and z=(-2)
Then, x+y+z=0
⇒x3+y3+z3=3xyz
⇒(a)3+(p)3+(-2)3=3×a×p×(-2)
⇒a3+p3-8=-6ap or
a3+p3+6ap-8=0

Second method:
=a3+6ap+p3-8=a3+p3+(-2)3-3ap(-2)
={a+p+(-2)}{a2+p2+(-2)2-ap-p(-2)-a(-2)}
=(a+p-2)(a2+p2+4-ap+2p+2a)
=0×(a2+p2+4-ap+2p+2a)=0


Q15 | Ex-4.5 | Class 9 |Algebraic Identities | KC SINHA Mathematics |myhelper

Question 15

Factorize the following :
(i) x3-y3-z3-3xyz
Sol :
$=(x-y-z)\left(x^{2}+(-y)^{2}+(-z)^{2}-(x)(-y)-(-y)(-z)-(-z)(x)\right.$
⇒(x-y-z)(x2+y2+z2+xy+xz-yz)


(ii) a3-b3-1-3ab
Sol :
$=a^{3}-b^{3}-1^{3}-3 a b$
$[a+(-b)+(-1)]\left[a^{2}+(-b)^{2}+(-1)^{2}-(a)(-b)-(-b)(-1)-(-1)(a)\right.$
⇒(a-b-1)(a2+b2+1+ab+a-b)


(iii) a3+b3-c3+3abc
Sol :
$=(a)^{3}+(b)^{3}+(-c)^{3}-3(a)(b)-(c)$
$=(a+b-c)\left[a^{2}+b^{2}+(-c)^{2}-(a)(b)-(b)(-c)-(-c)(a)\right]$
⇒(a+b-c)(a2+b2+c2-ab+bc+ca)


(iv) x3+8y3-z3+6xyz
Sol :
$\Rightarrow(x)^{3}+2^{3} \cdot y^{3}+(-z)^{3}-3(x)(2 y)(-z)$
$\Rightarrow(x)^{3}+(2 y)^{3}+(-z)^{3}-3(x)(+2 y)(-z)$
$\Rightarrow(x+2 y-z)\left(x^{2}+(2 y)^{2}+(-z)^{2}-(x)(2 y)\right.-(2y)(-z)-(-z)(x))$
⇒(x+2y-z)(x2+4y2+z2-2xy+xz+2yz)


Q16 | Ex-4.5 | Class 9 |Algebraic Identities | KC SINHA Mathematics |myhelper

Question 16

Find value of x3-8y3-36xy-216, if x=2y+6
[Hint: Given, x-2y-6=0
Let a=x , b=-2y and c=-6
Then , a+b+c=0
⇒ a3+b3+c3=3abc
⇒x3+(-2y)3+(-6)3=3x(-2y)(-6)
⇒x3-8y3-216=36xy
⇒x3-8y3-36xy-216=0


Page 4.36
Second method :
Given , x-2y=6
⇒(x-2y)3=(6)3
⇒x3-3x2y(x-2y)-8y3=216
⇒x3-6xy(6)-8y3-216=0
⇒x3-36xy-8y3-216=0


Q17 | Ex-4.5 | Class 9 |Algebraic Identities | KC SINHA Mathematics |myhelper

Question 17

Find the value of a3+b3+c3-3abc,if
(i) a+b+c=14 and a2+b2+c2=68
[Hint: (i) a+b+c=14
⇒(a+b+c)2=196
⇒a2+b2+c2+2(ab+bc+ac)=196
⇒68+2(ab+bc+ac)=196
⇒ab+bc+ac$=\dfrac{196-68}{2}=64$
Now ,a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)
=14×(68-64)=56]
Sol :

⇒56

(ii) a+b+c=9 and ab+bc+ca=26
Sol:
$a^{3}+b^{3}+c^{3}-3 abc=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$
$=9\left(a^{2}+b^{2}+c^{2}-(a b+b c+c a)\right)$
$=9\left(a^{2}+b^{2}+c^{2}-26\right)$...(i)


ab+bc+ca=26
Taking square both sides
$(a+b+c)^{2}=81$
$a^{2}+b^{2}+c^{2}+2(a b+b c+ca)=81$
$a^{2}+b^{2}+c^{2}+2 \times 26=81$
$a^{2}+b^{2}+c^{2}=81-52=29$...(ii)
Putting (ii) in (i)

=9(29-26)=9×3=27



Q18 | Ex-4.5 | Class 9 |Algebraic Identities | KC SINHA Mathematics |myhelper

Question 18

Find the value of x3+y3+z3 , if x+y+z=11,
x2+y2+z2=45 and xyz=40
Sol :

$x^{3}+y^{3}+z^{3}-3xy z=(x+y+z)\left(x^{2}-y^{2}+z^{2}-x y-y z-zx\right)$
$x^{3}+y^{3}+z^{3}-3 \times 40=(11)(45-(xy+yz+zx)$...(i)

x+y+z=11
$(x+y+z)^{2}=11^{2}$
$x^{2}+y^{2}+z^{2}+2\left(x y+yz+zx\right)=121$
$45+2(x y+y z+2 x)=121$
xy+yz+zx$=\frac{121-45}{2}=38$...(ii)

Putting (ii) in (i)
$x^{3}+y^{3}+z^{3}-120=11(45-38)$
$x^{3}+y^{3}+z^{3}-120=11 \times 7$
$x^{3}+y^{3}+z^{3}=77+120=197$


Q19 | Ex-4.5 | Class 9 |Algebraic Identities | KC SINHA Mathematics |myhelper

Question 19

Find the product
(i) (x+y-z)(x2+y2+z2-xy+yz+zx)
Sol :
$=(x+y-z)\left(x^{2}+y^2+z^{2}-xy+y z+z x\right)$
$=[x+y+(-z)]\left[x^{2}+y^{2}+(-z)^{2}-(x) (y\right)-(y)(-z)-(-z)(x)]$
$=x^{3}+y^{2}+(-z)^{3}-3(x)(y)(-z)$

⇒(x3+y3-z3+3xyz)

(ii) (3x-5y-4)(9x2+25y2+15xy+12x-20y+16)
[Hint: (i) We have(x+y-z)(x2+y2+z2-xy+yz+zx)]
=[x+y+(-z)][x2+y2+(-z)2-xy-y(-z)-x(-z)]
=(a+b+c)(a2+b2+c2-ab-bc-ac) , where a=x , b=yand c=-z
=a3+b3+c3-3abc=27x3-25y3-64-3(3x)(-5y)(-4)
=27x3-125y3-64-180xy


Q20 | Ex-4.5 | Class 9 |Algebraic Identities | KC SINHA Mathematics |myhelper

Question 20

(i) Find the value of x3+y3+z3 if x+y+z=1,
xy+yz+zx=-1 and xyz=-1
[Hint: (i) We know thatx3+y3+z3-3xyz
=(x+y+z)(x2+y2+z2-xy-yz-zx)]
⇒x3+y3+z3-3xyz=(x+y+z)(x2+y2+z2+2xy+2yz+2zx-3xy-3yz-3zx)
[Addingand subtracting 2xy+2yz+2zx in second bracket only]
⇒x3+y3+z3=(x+y+z)(x+y+z)2-3(xy+yz+zx)]+3xyz
[Transposing3xyz on R.H.S]
=1×[(1)2-3(-1)]+3(-1)
= 4-3 = 1
Sol :


⇒1

(ii) Simplify $\frac{\left(a^{2}-b^{2}\right)^{3}+\left(b^{2}-c^{2}\right)^{3}+\left(c^{2}-a^{2}\right)^{3}}{(a-b)^{3}+(b-c)^{3}+(c-a)^{3}}$

Sol :
(a2-b2)+(b2-c2)+(c2-a2)=0

∴Numerator
=(a2-b2)+(b2-c2)+(c2-a2)=3(a2-b2)(b2-c2)(c2-a2)
=3(a-b)(a+b)(b-c)(b+c)(c-a)(c+a)..(i)
Again, (a-b)+(b-c)+(c-a)=0
∴(a-b)3+(b-c)3+(c-a)3=3(a-b)(b-c)(c-a)..(ii)
Hence, given expression=(a+b)(b+c)(c+a)


Q21 | Ex-4.5 | Class 9 |Algebraic Identities | KC SINHA Mathematics |myhelper

Question 21

Prove that:
(i) (a3+b3+c3)-3abc=1/2(a+b+c){(a-b)2+(b-c)2+(c-a)2}
Sol :
$a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-ab-bc-ca\right)$
$=\frac{1}{2} \times(a+b+c) \left\{a^{2}+b^{2}-2 a b+b^{2}+c^{2}-2 bc\right.\left.+c^{2}+a^{2}-2 c a\right\}$
$=\frac{1}{2} \times (a+b+c) \left(2 a^{2}+2 b^{2}+2 c^{2}-2 a b\right. -2 bc-2 c a)$
$=2\times \frac{1}{2}(a+b+c)\left\{\left(a^{2}+b^{2}+c^{2}-a b-b c-ca\right\}\right.$
$a^{2}+b^{3}+c^{3}-3 a b c$



(ii) (a+b)3+(b+c)3+(c+a)3-3(a+b)(b+c)(c+a)=2(a3+b3+c3-3abc)
Sol :
$\Rightarrow(a+b)^{3}+(b+c)^{3}+(c+a)^{3}-3(a+b)(b+c)(c+a)$

$\left[(a+b)+(b+c)+(c+a)]\left((a+b)^{2}+(b+c)^{2}+\left(c+a)^{2}\right.\right.\right.-(a+b)(b+c)-(b+c)(c+a)-((c+a)(a+b)\}$

$\Rightarrow(2 a+2 b+2 c)\left\{a^{2}+b^{2}+2 a b+b^{2}+c^{2}+2 bc+c+a^{2}\right.+2 c a-[a(b+c)+b(b+c)]-[b(c+a)+c(c+a)]-[c(a+b)+a(a+b)]$

$=2(a+b+c) \{2 a^{2}+2 b^{2}+2 c^{2}+2 a b+2 b c+2 c a-\left[a b+a c+b^{2}+bc\right]-\left[b c+b a+c^{2}+c a\right]-\left[c a+c b+a^{2}\right.+ab]$

$\Rightarrow 2(a+b+c)\left[2 a^{2}+2 b^{2}+2 c^{2}+2 a b+2 b c+2 c a-a b-ac-b^{2}-b c\right. \left.-b c-b a-c^{2}-c a-c a-c b-a^{2}-a b\right\}$

$\Rightarrow 2(a+b+c)\left\{a^{2}+b^{2}+c^{2}+a b+b c+c a-a c-b c-b a-ca-cb-ab\right\}$

$\Rightarrow \quad 2(a+b+c)\left(a^{2}+b^{2}+c^{2}-c a-c b-a b\right)$

 =2(a3+b3+c3-3abc)



(iii) Factorize :p3(q-r)3+q3(r-p)3+r3(p-q)3
Sol :

$\Rightarrow[p(q-r)]^{3}+[q(r-p)]^{3}+[r(p-q)]^{3}$

[p(q-r)]=x , [q(r-p)]=y , [r(p-q)]=z

x3+y3+z3=3xyz, when x+y+z=0

=[p(q-r)]+[q(r-p)]+[r(p-q)]
=pq-rp+rq-qp+rp-rq
=0

∴3[p(q-r)]+[q(r-p)]+[r(p-q)]




(iv) Find the value of(x-a)3+(x-b)3+(x-c)3=3(x-a)(x-b)(x-c) whena+b+c=3x
Sol :
$(x-a)^{3}+(x-b)^{3}+(x-c)^{3}=3(x-a)(x-b)(x-c)$
$(x-a)^{3}+(x-b)^{3}+(x-c)^{3}-3(x-a)(x-b)(x-c)$

Using identity
$x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$

$=[(x-a)+(x-b)+(x-c)]\left[(x-a)^{2}+(x-b)^{2}+(x-c)^{2}-(x-a)(x-b)-(x-b)(x-c)-(x-c)(x-a)\right]$

$=[x-a+x-b+x-c]\left[x^{2}+a^{2}-2 a x+x^{2}+b^{2}-2 x b+x^{2}+c^{2}\right.-2x c-[x(x-b)-a(x-b)]-[x(x-c)-b(x-c)]-[x(x-a)-c(x-a)]$

$\Rightarrow[3x-a-b-c]\left\{3x^{2}+a^{2}-2xa+b^{2}-2xb+c^{2}-2xc-[x^2-xb-xa+ab]-[x^2-xc-bx+bc]-[x^2-xa-cx+ca]\right\}$

$\Rightarrow[3x-(a+b+c)]\left\{3x^{2}+a^{2}-2xa+b^{2}-2xb+c^{2}-2xc-[x^2-xb-xa+ab]-[x^2-xc-bx+bc]-[x^2-xa-cx+ca]\right\}$

 ∵a+b+c=3x

$\Rightarrow[3x-(3x)]\left\{3x^{2}+a^{2}-2xa+b^{2}-2xb+c^{2}-2xc-[x^2-xb-xa+ab]-[x^2-xc-bx+bc]-[x^2-xa-cx+ca]\right\}$

$\Rightarrow[0]\times\left\{3x^{2}+a^{2}-2xa+b^{2}-2xb+c^{2}-2xc-[x^2-xb-xa+ab]-[x^2-xc-bx+bc]-[x^2-xa-cx+ca]\right\}$

=0



No comments:

Post a Comment

Contact Form

Name

Email *

Message *