Exercise 19.7
Question 1
$\int \frac{\cos \sqrt{x}}{\sqrt{x}} d x$Sol :
Let z=√x then $d z=\frac{1}{2 \sqrt{x}} d x$
$2 d z=\frac{1}{\sqrt{x}} d x$
Now , $\int \frac{\cos \sqrt{x}}{\sqrt{x}} d x$
$=\int \cos z \cdot 2 d z$
$=2 \int \cos z d z$
=2sinz+c
=2sin√x+c
Question 2
$\int \frac{1}{x^{2}} \cdot \sin \frac{1}{x} d x$
Sol :
Let $z=\frac{1}{x}$ then $d z=-\frac{1}{x^{2}} d x$
$\Rightarrow-d z=\frac{1}{x^{2}} d x$
Now , $\int \frac{1}{x^{2}} \sin \frac{1}{x} d x$
$=\int \sin \frac{1}{x} \cdot \frac{1}{x^{2}} d x$
$=\int \sin z(-d z)$
$=-\int \sin zd z$
=-(-cos z)+c
=cosz+c
$=\cos \frac{1}{x}+c$
Question 3
$\int \frac{1}{x^{2}} \cos \frac{1}{x} d x$
Sol :
Let $z=\frac{1}{x}$ then $d z=-\frac{1}{x^{2}} d x$
$\Rightarrow-d z=\frac{1}{x^{2}} d x$
Now , $\int \frac{1}{x^{2}} \cos \frac{1}{x} d x$
$=\int \cos \frac{1}{x} \cdot \frac{1}{x^{2}} d x$
$=\int \cos z(-d z)$
$=-\int \cos z d z$
=-sinz+c
$=-\sin \frac{1}{x}+c$
Question 4
$\int e^{x} \cdot \cos \left(e^{x}+2\right) d x$
Sol :
Let $z=e^{x}+2$ then $d z=e^{x} d x$
Now , $\int e^{x} \cdot \cos \left(e^{x}+2\right) d x$
$=\int \cos \left(e^{x}+2\right) \cdot e^{x} d x$
$=\int \cos z \cdot d z$
=sinz+c
$=\sin \left(e^{x}+2\right)+c$
Question 5
$\int \frac{\sin \sqrt{x+1}}{\sqrt{x+1}} d x$
Sol :
Let $z=\sqrt{x+1}$ then $d z=\frac{1}{2 \sqrt{x+1}} d x$
$2 d z=\frac{1}{\sqrt{x+1}} d x$
Now , $\int \frac{\sin \sqrt{x+1}}{\sqrt{x+1}} d x$
$=\int \sin z \cdot z d z$
$=2 \int \sin z d z$
=2(-cosz)+c
=-2cosz+c
=$-2 \cos \sqrt{x+1}+c$
Question 6
$\int x^{2} \cdot \sec x^{3} d x$
Sol :
Let $z=x^{3}$ then $d z=3 x^{2} d x$
$\frac{d z}{3}=x^{2} d x$
Now , $\int x^{2} \cdot \sec x^{3} d x$
$=\int \sec x^{3} \cdot x^{2} d x$
$=\int \sec z \cdot \frac{d z}{3}$
$=\frac{1}{3} \int \sec z d z$
$=\frac{1}{3} \log |\sec z+\tan z|+c$
$=\frac{1}{3} \log \left|\sec x^{3}+\tan x^{3}\right|+c$
Question 7
$\int x^{\frac{1}{3}} \cdot \sin x^{\frac{4}{3}} d x$
Sol :
let $z=x^{\frac{4}{3}}$ then $d z=\frac{4}{3} \cdot x^{\frac{1}{3}} d x$
$\frac{3}{4} d z=x^{\frac{1}{3}} d x$
Now , $\int x^{\frac{1}{3}} \cdot \sin x^{\frac{4}{3}} d x$
$=\int \sin x^{\frac{4}{3}} x^{\frac{1}{3}} d x$
$=\int \sin z \cdot \frac{3}{4} d z$
$=\frac{3}{4} \int \sin z d z$
$=\frac{3}{4}(-\cos z)+c$
$=\frac{-3}{4} \cos z+c$
$=-\frac{3}{4} \cos x^{\frac{4}{3}}+c$
Question 8
$\int\left(x^{2}+1\right) \cdot \cos \left(x^{3}+3 x+2\right) d x$
Sol :
Let $z=x^{3}+3 x+2$ then $d z=\left(3 x^{2}+3\right) d x=3\left(x^{2}+1\right) d x$
$d z=3\left(x^{2}+1\right) d x$
$\frac{d z}{3}=\left(x^{2}+1\right) d x$
Now , $\int\left(x^{2}+1\right) \cdot \cos \left(x^{3}+3 x+2\right) d x$
$=\int \cos \left(x^{3}+3 x+2\right) \cdot\left(x^{2}+1\right) d x$
$=\int \cos z \frac{d z}{3}$
$=\frac{1}{3} \int \cos z d 2$
$=\frac{1}{3} \sin z+c$
$=\frac{1}{3} \sin \left(x^{3}+3 x+2\right)+c$
Question 9
$\int \frac{\cos (\log_e x)}{x} d x$
Sol :
Let z=logx then $d z=\frac{1}{x} d x$
Now , $\int \frac{\cos (\log x)}{x} d x$
$=\int \cos z\cdot d z$
=sinz+c
=sin(logx)+c
Question 10
(i) $\int \frac{\sec ^{2}(\log x)}{x} d x$
Sol :
Let z=logx then $d z=\frac{1}{x} d x$
Now , $\int \frac{\sec ^{2}(\log x)}{x} d x$
$=\int \sec ^{2} z d z$
=tanz+c
=tan(logx)+c
(ii) $\int \frac{\operatorname{cosec}^{2}(\log x)}{x} d x$
Sol :
Let z=logx then $d z=\frac{1}{x} d x$
Now , $\int \frac{\operatorname{cosec}^{2}(\log x)}{x} d x$
$=\int \operatorname{cosec}^{2} z d z$
=-cotz+c
=-cot(logx)+c
Question 11
$\int \frac{\sin (2+3 \log x)}{x} d x$
Sol :
Let z=2+3logx then $d z=3 \frac{1}{x} d x$
$d z=\frac{3}{x} d x$ $\Rightarrow \frac{d z}{3}=\frac{1}{x} d x$
Now , $\int \frac{\sin (2+3 \log x)}{x} d x$ $=\int \sin z \cdot \frac{d z}{3}$
$=\frac{1}{3} \int \sin z d z$ $=\frac{1}{3}(-\cos z)+c$ $=\frac{-1}{3} \cos (2+3 \log x)+c$
Question 12
$\int \frac{\tan \sqrt{x} \cdot \sec ^{2} \sqrt{x}}{\sqrt{x}} d x$
Sol :
Let $z=\tan \sqrt{x}$ then $d z=\frac{\sec ^{2} \sqrt{x}}{2 \sqrt{x}} d x$
$2 d z=\frac{\sec ^{2} \sqrt{x}}{\sqrt{x}} d x$
Now, $\int \frac{\tan \sqrt{x}-\sec ^{2} \sqrt{x}}{\sqrt{x}} d x$
$=\int z\cdot 2 d z$
$=2 \int z d z$
$=2 \frac{z^{2}}{2}+c$
$=z^{2}+c$
$=\tan ^{2}\sqrt{x}+c$
Question 13
$\int \frac{1}{x \cos ^{2}(\log x)} d x$
Sol :
Let z=logx then $d z=\frac{1}{x} d x$
Now , $\int \frac{1}{x \cos ^{2}(\log x)} d x$
$=\int \frac{\sec ^{2}(\log x)}{x} d x$
$=\int \sec ^{2} z d z$
=tanz+c
=tan(logx)+c
Question 14
$\int e^{x} \cdot \tan e^{x} \cdot \sec e^{x} d x$
Sol :
Let $z=e^{x}$ then $d z=e^{x} d x$
Now , $\int e^{x} \cdot \tan e^{x} \cdot \sec e^{x} d x$
$=\int \sec e^{x} \cdot \tan e^{x} \cdot e^{x} d x$
$=\int \sec z \cdot \tan z d z$
=secz+c
$=\sec e^{x}+c$
Question 15
$\int \frac{\sec ^{2} \sqrt{x+1}}{\sqrt{x+1}} d x$
Sol :
Let $z=\sqrt{x+1}$ then $d z=\frac{1}{2 \sqrt{x+1}} d x$
$2 d z=\frac{1}{\sqrt{x+1}} d x$
Now , $\int \frac{\sec ^{2} \sqrt{x+1}}{\sqrt{x+1}} d x$
$=\int \sec ^{2} z \cdot 2 d z$
$=2 \int \sec ^{2} z d z$
=2tanz+c
$=2 \tan \sqrt{x+1}+c$
Question 16
$\int 2 x \cdot \sin \left(x^{2}+1\right) d x$
Sol :
Let $z=x^{2}+1$ then dz=2xdx
Now , $\int 2 x \cdot \sin \left(x^{2}+1\right) d x$
$=\int \sin \left(x^{2}+1\right) \cdot 2 x d x$
$=\int \sin z \cdot d z$
$=(-\cos z)+c$
$=-\cos \left(x^{2}+1\right)+c$
Question 17
$\int \sin x \cdot \sin (\cos x) d x$
Sol :
Let z=cosx then dz=-sinxdx
⇒-dz=sinxdx
Now , $\int \sin x \cdot \sin (\cos x) d x$
$=\int \sin (\cos x) \cdot \sin x d x$
$=\int \sin z(-d z)$
$=-\int \sin z d z$
$=-(-\cos z)+c$
=cosz+c
=cos(cosx)+c
Question 18
$\int \frac{e^{x}(1+x)}{\sin ^{2}\left(x e^{x}\right)} d x$
Sol :
Let $z=x e^{x}$ then $d z=\left(x e^{x}+e^{x}\right) d x$
$d z=e^{x}(1+x) d x$
Now , $\int \frac{e^{x}(1+x) d x}{\sin ^{2}\left(x e^{x}\right)}$
$=\int \frac{d z}{\sin ^{2} z}$
$=\int \operatorname{cosec}^{2} z d z$
=-cotz+c
$=-\cot \left(x e^{x}\right)+c$
Question 19
$\int \frac{\cos \sqrt{x}-3}{\sqrt{x}} d x$
Sol :
Let $z=\sqrt{x}-3$ then $d z=\frac{1}{2 \sqrt{x}} d x$
$2 d z=\frac{1}{\sqrt{x}} d x$
Now , $\int \frac{\cos \sqrt{x}-3}{\sqrt{x}} d x$
$=\int \cos z \cdot 2 d z=$
$=2 \int \cos z d z$
=2sinz+c
=$=2 \sin (\sqrt{x}-3)+c$
Question 20
$\int \frac{\sec ^{2}(2+\log x)}{x} d x$
Sol :
Let z=(2+logx) then d z=\frac{1}{x} d x
Now , $\int \frac{\sec ^{2}(2+\log x)}{x} d x$
$=\int \sec ^{2} z d z$
=tanz+c
=tan(2+logx)+c
Question 21
$\int \frac{\cos \sqrt{a x+b}}{\sqrt{a x+b}} d x$
Sol :
Let $z=\sqrt{a x+b}$ then $d z=\frac{1 \times a}{2 \sqrt{a x+b}} d x$
$\Rightarrow \frac{2}{a} d z=\frac{1}{\sqrt{a x+b}} d x$
Now , $\int \frac{\cos \sqrt{a x}+b}{\sqrt{a x+b}} d x$
$=\int \cos z \cdot \frac{2}{a} d z$
$=\frac{2}{a} \int \cos z d z$
$=\frac{2}{a} \sin z+c$
$=\frac{2}{a} \sin \sqrt{a x+b}+c$
Question 22
$\int \frac{\sin ^{3}(3+2 \log x)}{x} d x$
Sol :
Let z=(3+2logx) then $d 2=\frac{2}{x} d x \quad \Rightarrow \frac{d z}{2}=\frac{1}{x} d x$
Now , $\int \frac{\sin ^{3}(3+2 \log x)}{x} d x$
$=\int \sin ^{3} z \cdot \frac{d z}{2}$
$=\frac{1}{2} \int \sin ^{3} z d 2$
$=\frac{1}{2} \int \frac{3 \sin z-\sin 3z}{4} d z$
$=\frac{3}{8} \int \sin z d z-\frac{1}{8} \int \sin 3z d z$
$=-\frac{3}{8} \cos z+\frac{1}{8 \times 3} \cos 3z+c$
$=\frac{-3}{8} \cos z+\frac{1}{24} \cos 3z+c$
$-\frac{3}{8} \cos (3+2 \log x)+\frac{1}{24} \cos 3(3+2 \log x)+c$
$=-\frac{3}{8} \cos (3+2 \log x)+\frac{1}{24} \cos (9+6 \log x)+c$
Question 23
$\int \frac{\sin \left(\tan ^{-1} x\right)}{1+x^{2}} d x$
Sol :
Let $z=\tan ^{2} x$ then $d z=\frac{1}{1+x^{2}} d x$
Now , $\int \frac{\sin \left(\tan ^{-1} x\right)}{1+x^{2}} d x$
$=\int \sin z d z$
=-cosz+c
$=-\cos \left(\tan ^{-1} x\right)+c$
Question 24
$\int \frac{x^{3} \cdot \sin \left(\tan ^{-1} x^{4}\right)}{1+x^{8}} d x$
Sol :
Let $z=\tan ^{-1} x^{4}$ then
$d z=\frac{4 \cdot x^{3}}{1+\left(x^{4}\right)^{2}} d x$
$d z=\frac{4 x^{3}}{1+x^{8}} d x$
$\frac{d z}{4}=\frac{x^{3}}{1+x^{8}} d x$
Now , $\int \frac{x^{3} \cdot \sin \left(\tan ^{-1} x^{4}\right)}{1+x^{8}} d x$
$=\int \sin z \cdot \frac{d z}{4}=\frac{1}{4} \int \sin z d z$
$=\frac{1}{4}(-\cos z)+c$
$=-\frac{1}{4} \cos \left(\tan ^{-1} x^{4}\right)+c$
$\int \frac{1}{x^{2}} \cdot \sin \frac{1}{x} d x$
Sol :
Let $z=\frac{1}{x}$ then $d z=-\frac{1}{x^{2}} d x$
$\Rightarrow-d z=\frac{1}{x^{2}} d x$
Now , $\int \frac{1}{x^{2}} \sin \frac{1}{x} d x$
$=\int \sin \frac{1}{x} \cdot \frac{1}{x^{2}} d x$
$=\int \sin z(-d z)$
$=-\int \sin zd z$
=-(-cos z)+c
=cosz+c
$=\cos \frac{1}{x}+c$
Question 3
$\int \frac{1}{x^{2}} \cos \frac{1}{x} d x$
Sol :
Let $z=\frac{1}{x}$ then $d z=-\frac{1}{x^{2}} d x$
$\Rightarrow-d z=\frac{1}{x^{2}} d x$
Now , $\int \frac{1}{x^{2}} \cos \frac{1}{x} d x$
$=\int \cos \frac{1}{x} \cdot \frac{1}{x^{2}} d x$
$=\int \cos z(-d z)$
$=-\int \cos z d z$
=-sinz+c
$=-\sin \frac{1}{x}+c$
Question 4
$\int e^{x} \cdot \cos \left(e^{x}+2\right) d x$
Sol :
Let $z=e^{x}+2$ then $d z=e^{x} d x$
Now , $\int e^{x} \cdot \cos \left(e^{x}+2\right) d x$
$=\int \cos \left(e^{x}+2\right) \cdot e^{x} d x$
$=\int \cos z \cdot d z$
=sinz+c
$=\sin \left(e^{x}+2\right)+c$
Question 5
$\int \frac{\sin \sqrt{x+1}}{\sqrt{x+1}} d x$
Sol :
Let $z=\sqrt{x+1}$ then $d z=\frac{1}{2 \sqrt{x+1}} d x$
$2 d z=\frac{1}{\sqrt{x+1}} d x$
Now , $\int \frac{\sin \sqrt{x+1}}{\sqrt{x+1}} d x$
$=\int \sin z \cdot z d z$
$=2 \int \sin z d z$
=2(-cosz)+c
=-2cosz+c
=$-2 \cos \sqrt{x+1}+c$
Question 6
$\int x^{2} \cdot \sec x^{3} d x$
Sol :
Let $z=x^{3}$ then $d z=3 x^{2} d x$
$\frac{d z}{3}=x^{2} d x$
Now , $\int x^{2} \cdot \sec x^{3} d x$
$=\int \sec x^{3} \cdot x^{2} d x$
$=\int \sec z \cdot \frac{d z}{3}$
$=\frac{1}{3} \int \sec z d z$
$=\frac{1}{3} \log |\sec z+\tan z|+c$
$=\frac{1}{3} \log \left|\sec x^{3}+\tan x^{3}\right|+c$
Question 7
$\int x^{\frac{1}{3}} \cdot \sin x^{\frac{4}{3}} d x$
Sol :
let $z=x^{\frac{4}{3}}$ then $d z=\frac{4}{3} \cdot x^{\frac{1}{3}} d x$
$\frac{3}{4} d z=x^{\frac{1}{3}} d x$
Now , $\int x^{\frac{1}{3}} \cdot \sin x^{\frac{4}{3}} d x$
$=\int \sin x^{\frac{4}{3}} x^{\frac{1}{3}} d x$
$=\int \sin z \cdot \frac{3}{4} d z$
$=\frac{3}{4} \int \sin z d z$
$=\frac{3}{4}(-\cos z)+c$
$=\frac{-3}{4} \cos z+c$
$=-\frac{3}{4} \cos x^{\frac{4}{3}}+c$
Question 8
$\int\left(x^{2}+1\right) \cdot \cos \left(x^{3}+3 x+2\right) d x$
Sol :
Let $z=x^{3}+3 x+2$ then $d z=\left(3 x^{2}+3\right) d x=3\left(x^{2}+1\right) d x$
$d z=3\left(x^{2}+1\right) d x$
$\frac{d z}{3}=\left(x^{2}+1\right) d x$
Now , $\int\left(x^{2}+1\right) \cdot \cos \left(x^{3}+3 x+2\right) d x$
$=\int \cos \left(x^{3}+3 x+2\right) \cdot\left(x^{2}+1\right) d x$
$=\int \cos z \frac{d z}{3}$
$=\frac{1}{3} \int \cos z d 2$
$=\frac{1}{3} \sin z+c$
$=\frac{1}{3} \sin \left(x^{3}+3 x+2\right)+c$
Question 9
$\int \frac{\cos (\log_e x)}{x} d x$
Sol :
Let z=logx then $d z=\frac{1}{x} d x$
Now , $\int \frac{\cos (\log x)}{x} d x$
$=\int \cos z\cdot d z$
=sinz+c
=sin(logx)+c
Question 10
(i) $\int \frac{\sec ^{2}(\log x)}{x} d x$
Sol :
Let z=logx then $d z=\frac{1}{x} d x$
Now , $\int \frac{\sec ^{2}(\log x)}{x} d x$
$=\int \sec ^{2} z d z$
=tanz+c
=tan(logx)+c
(ii) $\int \frac{\operatorname{cosec}^{2}(\log x)}{x} d x$
Sol :
Let z=logx then $d z=\frac{1}{x} d x$
Now , $\int \frac{\operatorname{cosec}^{2}(\log x)}{x} d x$
$=\int \operatorname{cosec}^{2} z d z$
=-cotz+c
=-cot(logx)+c
Question 11
$\int \frac{\sin (2+3 \log x)}{x} d x$
Sol :
Let z=2+3logx then $d z=3 \frac{1}{x} d x$
$d z=\frac{3}{x} d x$ $\Rightarrow \frac{d z}{3}=\frac{1}{x} d x$
Now , $\int \frac{\sin (2+3 \log x)}{x} d x$ $=\int \sin z \cdot \frac{d z}{3}$
$=\frac{1}{3} \int \sin z d z$ $=\frac{1}{3}(-\cos z)+c$ $=\frac{-1}{3} \cos (2+3 \log x)+c$
Question 12
$\int \frac{\tan \sqrt{x} \cdot \sec ^{2} \sqrt{x}}{\sqrt{x}} d x$
Sol :
Let $z=\tan \sqrt{x}$ then $d z=\frac{\sec ^{2} \sqrt{x}}{2 \sqrt{x}} d x$
$2 d z=\frac{\sec ^{2} \sqrt{x}}{\sqrt{x}} d x$
Now, $\int \frac{\tan \sqrt{x}-\sec ^{2} \sqrt{x}}{\sqrt{x}} d x$
$=\int z\cdot 2 d z$
$=2 \int z d z$
$=2 \frac{z^{2}}{2}+c$
$=z^{2}+c$
$=\tan ^{2}\sqrt{x}+c$
Question 13
$\int \frac{1}{x \cos ^{2}(\log x)} d x$
Sol :
Let z=logx then $d z=\frac{1}{x} d x$
Now , $\int \frac{1}{x \cos ^{2}(\log x)} d x$
$=\int \frac{\sec ^{2}(\log x)}{x} d x$
$=\int \sec ^{2} z d z$
=tanz+c
=tan(logx)+c
Question 14
$\int e^{x} \cdot \tan e^{x} \cdot \sec e^{x} d x$
Sol :
Let $z=e^{x}$ then $d z=e^{x} d x$
Now , $\int e^{x} \cdot \tan e^{x} \cdot \sec e^{x} d x$
$=\int \sec e^{x} \cdot \tan e^{x} \cdot e^{x} d x$
$=\int \sec z \cdot \tan z d z$
=secz+c
$=\sec e^{x}+c$
Question 15
$\int \frac{\sec ^{2} \sqrt{x+1}}{\sqrt{x+1}} d x$
Sol :
Let $z=\sqrt{x+1}$ then $d z=\frac{1}{2 \sqrt{x+1}} d x$
$2 d z=\frac{1}{\sqrt{x+1}} d x$
Now , $\int \frac{\sec ^{2} \sqrt{x+1}}{\sqrt{x+1}} d x$
$=\int \sec ^{2} z \cdot 2 d z$
$=2 \int \sec ^{2} z d z$
=2tanz+c
$=2 \tan \sqrt{x+1}+c$
Question 16
$\int 2 x \cdot \sin \left(x^{2}+1\right) d x$
Sol :
Let $z=x^{2}+1$ then dz=2xdx
Now , $\int 2 x \cdot \sin \left(x^{2}+1\right) d x$
$=\int \sin \left(x^{2}+1\right) \cdot 2 x d x$
$=\int \sin z \cdot d z$
$=(-\cos z)+c$
$=-\cos \left(x^{2}+1\right)+c$
Question 17
$\int \sin x \cdot \sin (\cos x) d x$
Sol :
Let z=cosx then dz=-sinxdx
⇒-dz=sinxdx
Now , $\int \sin x \cdot \sin (\cos x) d x$
$=\int \sin (\cos x) \cdot \sin x d x$
$=\int \sin z(-d z)$
$=-\int \sin z d z$
$=-(-\cos z)+c$
=cosz+c
=cos(cosx)+c
Question 18
$\int \frac{e^{x}(1+x)}{\sin ^{2}\left(x e^{x}\right)} d x$
Sol :
Let $z=x e^{x}$ then $d z=\left(x e^{x}+e^{x}\right) d x$
$d z=e^{x}(1+x) d x$
Now , $\int \frac{e^{x}(1+x) d x}{\sin ^{2}\left(x e^{x}\right)}$
$=\int \frac{d z}{\sin ^{2} z}$
$=\int \operatorname{cosec}^{2} z d z$
=-cotz+c
$=-\cot \left(x e^{x}\right)+c$
Question 19
$\int \frac{\cos \sqrt{x}-3}{\sqrt{x}} d x$
Sol :
Let $z=\sqrt{x}-3$ then $d z=\frac{1}{2 \sqrt{x}} d x$
$2 d z=\frac{1}{\sqrt{x}} d x$
Now , $\int \frac{\cos \sqrt{x}-3}{\sqrt{x}} d x$
$=\int \cos z \cdot 2 d z=$
$=2 \int \cos z d z$
=2sinz+c
=$=2 \sin (\sqrt{x}-3)+c$
Question 20
$\int \frac{\sec ^{2}(2+\log x)}{x} d x$
Sol :
Let z=(2+logx) then d z=\frac{1}{x} d x
Now , $\int \frac{\sec ^{2}(2+\log x)}{x} d x$
$=\int \sec ^{2} z d z$
=tanz+c
=tan(2+logx)+c
Question 21
$\int \frac{\cos \sqrt{a x+b}}{\sqrt{a x+b}} d x$
Sol :
Let $z=\sqrt{a x+b}$ then $d z=\frac{1 \times a}{2 \sqrt{a x+b}} d x$
$\Rightarrow \frac{2}{a} d z=\frac{1}{\sqrt{a x+b}} d x$
Now , $\int \frac{\cos \sqrt{a x}+b}{\sqrt{a x+b}} d x$
$=\int \cos z \cdot \frac{2}{a} d z$
$=\frac{2}{a} \int \cos z d z$
$=\frac{2}{a} \sin z+c$
$=\frac{2}{a} \sin \sqrt{a x+b}+c$
Question 22
$\int \frac{\sin ^{3}(3+2 \log x)}{x} d x$
Sol :
Let z=(3+2logx) then $d 2=\frac{2}{x} d x \quad \Rightarrow \frac{d z}{2}=\frac{1}{x} d x$
Now , $\int \frac{\sin ^{3}(3+2 \log x)}{x} d x$
$=\int \sin ^{3} z \cdot \frac{d z}{2}$
$=\frac{1}{2} \int \sin ^{3} z d 2$
$=\frac{1}{2} \int \frac{3 \sin z-\sin 3z}{4} d z$
$=\frac{3}{8} \int \sin z d z-\frac{1}{8} \int \sin 3z d z$
$=-\frac{3}{8} \cos z+\frac{1}{8 \times 3} \cos 3z+c$
$=\frac{-3}{8} \cos z+\frac{1}{24} \cos 3z+c$
$-\frac{3}{8} \cos (3+2 \log x)+\frac{1}{24} \cos 3(3+2 \log x)+c$
$=-\frac{3}{8} \cos (3+2 \log x)+\frac{1}{24} \cos (9+6 \log x)+c$
Question 23
$\int \frac{\sin \left(\tan ^{-1} x\right)}{1+x^{2}} d x$
Sol :
Let $z=\tan ^{2} x$ then $d z=\frac{1}{1+x^{2}} d x$
Now , $\int \frac{\sin \left(\tan ^{-1} x\right)}{1+x^{2}} d x$
$=\int \sin z d z$
=-cosz+c
$=-\cos \left(\tan ^{-1} x\right)+c$
Question 24
$\int \frac{x^{3} \cdot \sin \left(\tan ^{-1} x^{4}\right)}{1+x^{8}} d x$
Sol :
Let $z=\tan ^{-1} x^{4}$ then
$d z=\frac{4 \cdot x^{3}}{1+\left(x^{4}\right)^{2}} d x$
$d z=\frac{4 x^{3}}{1+x^{8}} d x$
$\frac{d z}{4}=\frac{x^{3}}{1+x^{8}} d x$
Now , $\int \frac{x^{3} \cdot \sin \left(\tan ^{-1} x^{4}\right)}{1+x^{8}} d x$
$=\int \sin z \cdot \frac{d z}{4}=\frac{1}{4} \int \sin z d z$
$=\frac{1}{4}(-\cos z)+c$
$=-\frac{1}{4} \cos \left(\tan ^{-1} x^{4}\right)+c$
Super
ReplyDelete