Exercise 10.2
Type-1
Question 1
Find the square root of the following :(i) 7-24i
Sol :
=4^{2}+(3 i)^{2}-2 \cdot 4 \cdot 3 i
=(4-3 i)^{2}
\sqrt{7-4i}=\pm \sqrt{(4-3 i)^{2}}
=\pm(4-3 i)
(ii) -11-60 \sqrt{-1}
Sol :
=(5)^{2}+(6 i)^{2}-2 \cdot 5 \cdot 6 i
=(5-6 i)^{2}
\sqrt{-11-60 \sqrt{-1}}=\pm \sqrt{(5-6 i)^{2}}
=\pm(5-6 i)
(iii) -8-6i
Sol :
=\quad 1^{2}+(3 i)^{2}-2 \cdot 1 \cdot 3 i
=(1-3 i)^{2}
\sqrt{-8-6 i}=\pm \sqrt{(1-3i)^{2}}
=\pm(1-3 i)
(iv) -5+12i
Sol :
=2^{2}+(3 i)^{2}+2 \cdot 2 \cdot 3 i
=(2+3 i)^{2}
\sqrt{-5+12 i}=\pm \sqrt{(2+3 i)^{2}}
=\pm(2+3 i)
(v) 4-6 \sqrt{-5}
Sol :
=4-6 \sqrt{3} i
=3^{2}+(\sqrt{5} i)^{2}
=(3-\sqrt{5} i)^{2}
\sqrt{4-6 \sqrt{-5}}=\pm \sqrt{(3-\sqrt{5} i)^{2}}
=\pm(3-\sqrt{5} i)
(vi) 6 \sqrt{-2}-7
Sol :
=-7+6 \sqrt{2} i
=(\sqrt2)^{2}+(3 i)^{2}+2 \cdot \sqrt{2} \cdot 3 i
=(\sqrt{2}+3 i)^{2}
\sqrt{6 \sqrt{-2}-7}=\pm \sqrt{(\sqrt{2}+3 \sqrt{2})^{2}}
=\pm(\sqrt{2}+3 i)
(vii) 4 a b-2\left(a^{2}-b^{2}\right) i
Sol :
(a+b)^{2}+\left\{(a-b)i\}^{2}-2 \cdot(a+b)(a-b)i\right.
=[(a+b)-i(a-b)]^{2}
\sqrt{4 a b-2\left(a^{2}-b^{2}\right) i}=\pm \sqrt{[(a+b)-i(a-b)]^{2}}
=\pm[(a+b)-i(a-b)]
(viii) \frac{x^{2}}{y^{2}}+\frac{y^{2}}{x^{2}}-\frac{1}{i}\left(\frac{x}{y}-\frac{y}{x}\right)-\frac{9}{4}
Sol :
=\left(\frac{x}{y}-\frac{y}{x}\right)^{2}+2 \frac{x}{y} \times \frac{y}{x}-\frac{1}{i}\left(\frac{x}{y}-\frac{y}{x}\right)-\frac{9}{4}
=\left(\frac{x}{y}-\frac{y}{x}\right)^{2}+2-\frac{9}{4}-\frac{1}{i}\left(\frac{x}{y}-\frac{y}{x}\right)
=\left(\frac{x}{y}-\frac{y}{x}\right)^{2}+\frac{8-9}{4}-\frac{1}{j}\left(\frac{x}{y}-\frac{y}{x}\right)
=\left(\frac{x}{y}-\frac{y}{x}\right)^{2}-\frac{1}{4}-\frac{1}{i}\left(\frac{x}{y}-\frac{y}{x}\right)
=\left(\frac{x}{y}-\frac{y}{x}\right)^{2}+\left(\frac{i}{2}\right)^{2}-2 \cdot\left(\frac{x}{y}-\frac{y}{x}\right) \cdot \frac{1}{2 i} \times \frac{i}{i}
=\left(\frac{x}{y}-\frac{y}{x}\right)^{2}+\left(\frac{i}{2}\right)^{2}+2 \cdot\left(\frac{x}{y}-\frac{y}{x}\right) \frac{i}{2}
=\left(\frac{x}{y}-\frac{y}{x}+\frac{1}{2}\right)^{2}
\sqrt{\frac{x^{2}}{y^{2}}+\frac{y^{2}}{x}-\frac{1}{x}\left(\frac{x}{y}-\frac{y}{x}\right){-\frac{9}{4}}}
=\pm \sqrt{\left(\frac{x}{y}-\frac{y}{x}+\frac{i}{2}\right)^{2}}
=\pm\left(\frac{x}{y}-\frac{y}{x}+\frac{i}{2}\right)
(ix) x^{2}+\frac{1}{x^{2}}+4 i\left(x-\frac{1}{x}\right)-6
Sol :
=\left(x-\frac{1}{x}\right)^{2}+2 \cdot x \cdot \frac{1}{x}-6+4i\left(x-\frac{1}{x}\right)
=\left(x-\frac{1}{x}\right)^{2}-4+4 i\left(x-\frac{1}{x}\right)
=\left(x-\frac{1}{x}\right)^{2}+(2 i)^{2}+2 \cdot\left(x-\frac{1}{x}\right) \cdot 2i
=\left(x-\frac{1}{x}+2 i\right)^{2}
\sqrt{x^{2}+\frac{1}{x^{2}}+4 i\left(x-\frac{1}{x}\right)-6}
=\pm \sqrt{\left(x-\frac{1}{x}+2i\right)^{2}}
=\pm\left(x-\frac{1}{x}+2 i\right)
(x) 9+20i
Sol :
=9+2.10.i
x^{2}+y^{2}=9
xy=10
y=\frac{10}{x}
x^{2}+\left(\frac{10}{x}\right)^{2}=9
x^{2}+\frac{100}{x^{2}}=9
\frac{x^{4}+100}{x^{2}}=9
x^{4}+100=9x^{2}
x^{4}-9 x^{2}+100=0
x^{2}=\frac{-(-9)\pm \sqrt{(-9)^2-4\times1\times100}}{2 \times 1}
=\frac{9 \pm \sqrt{81-400}}{2}
=\left(\sqrt{\frac{\sqrt{481}+9}{2}}\right)^{2}+\left(\frac{\sqrt{\sqrt{481}-9}}{2} i\right)^{2}+2 \cdot \sqrt{\frac{\sqrt{481}+9}{2}} \times \sqrt{\frac{\sqrt{481-9}}{2}}i
=\left(\sqrt{\frac{\sqrt{481}+9}{2}}+\sqrt{\frac{\sqrt{481}-9}{2}} i\right)^{2}
\sqrt{9+20 i}=\pm \left(\sqrt{\frac{\sqrt{481}+9}{2}}+\sqrt{\frac{\sqrt{41}-9}{2}} i\right)
Question 2
Find \sqrt{2+3 \sqrt{-5}}+\sqrt{2-3 \sqrt{-5}}Sol :
=\sqrt{2+3 \sqrt{5}} i+\sqrt{2-3 \sqrt{5}}i
=\sqrt{\frac{1}{2} \cdot 2(2+3 \sqrt{5}i)}+\sqrt{\frac{1}{2} \cdot 2(2-3 \sqrt{5} i)}
=\sqrt{\frac{1}{2}(4+6 \sqrt{5} i)}+\sqrt{\frac{1}{2}(4-6 \sqrt{5} i)}
=\sqrt{\left.\frac{1}{2}\left(3^{2}+(\sqrt{5})\right)^{2}+2 \cdot 3 \cdot \sqrt{5} i\right)}+\sqrt{\frac{1}{2}\left(3^{2}+(\sqrt{5}i)^{2}\right.-2 \cdot 3 \cdot \sqrt{5}i}
=\sqrt{\frac{1}{2}(3+\sqrt{5}i)^{2}}+\sqrt{\frac{1}{2}(3-\sqrt{5} i)^{2}}
=\pm \frac{1}{\sqrt{2}}(3+\sqrt{5} i) \pm \frac{1}{\sqrt{2}}(3-\sqrt{5} i)
=\pm \frac{1}{\sqrt{2}}(3+\sqrt{5}i + 3-\sqrt{5}i)
=\pm \frac{1}{\sqrt2} \times 6=\pm \frac{6}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}
=\pm \frac{6\sqrt{2}}{2}=\pm 3 \sqrt{2}
Question 2
If \alpha=\frac{-1+\sqrt{-3}}{2}, \beta=\frac{-1-\sqrt{-3}}{2} prove that \frac{\alpha}{\beta}+\frac{\beta}{\alpha}+1=0Sol :
Let
\alpha=\frac{-1+\sqrt{-3}}{2}=\omega
\beta=\frac{-1-\sqrt{-3}}{2}=\omega^{2}
L.H.S
\frac{\alpha}{\beta}+\frac{\beta}{\alpha}+1=\frac{\omega}{\omega^{2}}+\frac{\omega^2}{\omega}+1
=\omega^{2}+\omega+1=0
Question 4
Note:\begin{array}{l} \text { (i)} 1+w+w^{2}=0 \\ \text { (ii)} 1+w=-w^{2} \\ \text { (iii) } 1+w^{2}=-\omega \\ \text { (iv) } w+w^{2}=-1 \\ \text { (v) } w^{3}=1 \\ \text { (vi) } \omega=\frac{1}{\omega^{2}} \\ \text { (vii) } \omega^{2}=\frac{1}{w} \end{array}
If 1, \omega, \omega^{2} be three cube roots of 1 , show that:
(i) \left(1+\omega-\omega^{2}\right)\left(1-\omega+\omega^{2}\right)=4
Sol :
L.H.S
\left(1+w-w^{2}\right)\left(1-w+w^{2}\right)
=\left(-\omega^{2}-\omega^{2}\right)(-\omega-\omega)
=\left(-2 w^{2}\right)(-2 w)
=4 w^{3}
=4(1) =4
(ii) \left(3+\omega+3 \omega^{2}\right)^{6}=64
Sol :
L.H.S
\left(3+\omega+3 \omega^{2}\right)^{6}
=\left[3+3 w^{2}+w\right]^{6}
=\left[3\left(1+w^{2}\right)+w\right]^{4}
=[3(-\omega)+\omega]^{6}
=(-2 w)^{6}=64 w^{6}
=64\left(\omega^{3}\right)^{2}=64(1)^{2}
=64
Question 5
Evaluate:\sqrt{-2+2 \sqrt{-2+2 \sqrt{-2+\ldots \infty}}}
Sol :
Let
y=\sqrt{-2+2 \sqrt{-2+2 \sqrt{-2+\ldots \infty}}}
y=\sqrt{-2+2 y}
Squaring both sides
y^{2}=(\sqrt{-2+2 y})^{2}
y^{2}=-2+2 y
y^{2}-2 y+2=0
a=1 , b=-2 , c=2
y=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
y=\frac{-(-2) \pm \sqrt{(-2)^{2}-4 \times 1 \times 2}}{2 \times{1}}
y=\frac{2 \pm \sqrt{4-8}}{2}
y=2 \frac{\pm \sqrt{-4}}{2}
y=\frac{2 \pm 2 i}{2}
=\frac{2(1 \pm i)}{-2}
=1 \pm i
Question 6
Show that\left(\frac{\sqrt{3}+i}{2}\right)^{6}+\left(\frac{i-\sqrt{3}}{2}\right)^{6}=-2
Sol :
L.H.S
\left(\frac{\sqrt{3}+i}{2}\right)^{6}+\left(\frac{i-\sqrt{3}}{2}\right)^6
=\left[\left(\frac{\sqrt{3}+1}{2}\right)^{2}\right]^{3}+\left[\left(\frac{i-\sqrt{3}}{2}\right)^{2}\right]^{3}
=\left[\frac{(\sqrt3)^{2}+i^{2}+2 \cdot \sqrt3 \cdot i}{4}\right]^{3}+\left[\frac{i^{2}+(\sqrt 3)^{2}-2 \cdot i \sqrt{3}}{4}\right]^{3}
=\left[\frac{3-1+2 \sqrt{3}i}{4}\right]^{3}+\left[\frac{-1+3-2 \sqrt{3} i}{4}\right]^{3}
=\left[\frac{2+2 \sqrt{3} i}{4}\right]^{3}+\left[\frac{2-2 \sqrt{3} i}{4}\right]^{3}
=\left[\frac{2(1+\sqrt{3}i]}{4}\right]^{3}+\left[\frac{2(1-\sqrt{3} i)}{4}\right]^{3}
=\frac{1}{8}(1+\sqrt{3} i)^{3}+\frac{1}{8}(1-\sqrt{3} i)^{3}
=\frac{1}{8}\left[(1)^{3}+(\sqrt3 i)^{3}+3 \cdot 1^{2} \cdot \sqrt{3} i+3 \cdot 1 \cdot(\sqrt{3} i)^{2}+1^{3}-(\sqrt{3} i)^{3}-3.1^2.\sqrt3 i+3.1.(\sqrt{3}i)^2 \right]
=\frac{1}{8}[1+9(-1)+1+9(-1)]
=\frac{1}{8}[1-9+1-9]
=\frac{1}{8}(2-18)
=\dfrac{1}{8}(-16)
Question 7
If 1, \omega, \omega^{2} be the three cube roots of 1 then show that :(i) (1+\omega)\left(1+\omega^{2}\right)\left(1+\omega^{4}\right)\left(1+\omega^{5}\right)=1
Sol :
L.H.S
(1+\omega)\left(1+\omega^{2}\right)\left(1+\omega^{4}\right)\left(1+\omega^{5}\right)
=\left(-\omega^{2}\right)(-\omega) \cdot\left(1+\omega^{3} \cdot \omega\right)\left(1+\omega^{3} \cdot \omega^{2}\right)
=w^{3} \cdot(1+w)\left(1+w^{2}\right)
=1 \times\left(-\omega^{2}\right)(-\omega)
=1 \times w^{3}
=1×1
=1
(iii) \left(2 + \omega+\omega^{2}\right)^{3}+\left(1+\omega-\omega^{2}\right)^{8}-\left(1-3 \omega+\omega^{2}\right)^{4}=1
Sol :
L.H.S
\left(2 + \omega+\omega^{2}\right)^{3}+\left(1+\omega-\omega^{2}\right)^{8}-\left(1-3 \omega+\omega^{2}\right)^{4}
=(2-1)^{3}+\left(-\omega^{2}-\omega^{2}\right)^{8}-(-\omega-3 \omega)^{4}
=(1)^{3}+\left(-2 \omega^{2}\right)^{8}-(-4 \omega)^{4}
=1+256 w^{16}-256 w^{4}
=1+256\left(\omega^{3}\right)^{5} \cdot \omega-256 \omega^{3} \cdot \omega
=1+256𝜔-256𝜔
=1
(iv) \left(1-\omega+\omega^{2}\right)\left(1-\omega^{2}+\omega^{4}\right)\left(1-\omega^{4}+\omega^{8}\right)\left(1-\omega^{8}+\omega^{16}\right) =16
Sol :
L.H.S
\left(1-\omega+\omega^{2}\right)\left(1-\omega^{2}+\omega^{4}\right)\left(1-\omega^{4}+\omega^{8}\right)\left(1-\omega^{8}+\omega^{16}\right)
=\left(1-\omega+\omega^{2}\right)\left(1-\omega^{2}+\omega^{3} \cdot \omega\right)\left(1-\omega^{3} \cdot \omega+\left(\omega^{3}\right)^{2} \omega^{2}\right)\left(1-\left(\omega^{3}\right)^{2} \omega^{2}\right.\left.+\left(\omega^{3}\right)^{5} \omega\right)
=\left(1-\omega+\omega^{2}\right)\left(1-\omega^{2}+\omega\right)\left(1-\omega+\omega^{2}\right)\left(1-\omega^{2}+\omega\right)
=(-\omega-\omega)\left(-\omega^{2}-\omega^{2}\right)(-\omega-\omega)\left(-\omega^{2}-\omega^{2}\right)
=(-2 \omega)\left(-2 \omega^{2}\right)(-2 \omega)\left(-2 \omega^{2}\right)
=4 \omega^{3} \times 4 \omega^{3}
=4×1×4×1
=16
Question 8
If x=a+b , y=a \omega+b \omega^{2}, z=a \omega^{2}+b \omega prove that x^{3}+y^{3}+z^{3}=3\left(a^{3}+b^{3}\right)Sol :
x=a+b \Rightarrow x^{3}=(a+b)^{3}
x^{3}=a^{3}+b^{3}+3 a^{2} b+3 a b^{2}..(i)
y=a w+b w^{2} \Rightarrow y^{3}=\left(a w+b w^{2}\right)^{3}
y^{3}=(a \omega)^{3}+\left(b \omega^{2}\right)^{3}+3 \cdot(a \omega)^{2} \cdot\left(b \omega^{2}\right)+3 \cdot a \omega \cdot\left(b \omega^{2}\right)^{2}
y^{3}=a^{3} w^{3}+b^{3} w^{6}+3 a^{2} b w^{4}+3 a b^{2} w^{5}
y^{3}=a^{3}+b^{3} \cdot\left(w^{3}\right)^{2}+3 a^{2} b w^{3} \cdot w+3ab^2\omega^3\omega^2
y^{3}=a^{3}+b^{3}+3 a^{2} b w+3 a b^{2} w^{2}..(ii)
z=a w^{2}+b w \Rightarrow z^{3}=\left(a w^{2}+b w\right)^{3}
z^{3}=\left(a w^{2}\right)^{3}+(b w)^{3}+3 \cdot\left(a w^{2}\right)^{2} \cdot b w+3 \cdot\left(a w^{2}\right) \cdot(b w)^{2}
z^{3}=a^{3} w^{6}+b^{3} w^{3}+3 a^{2} b w^{5}+3ab^2\omega^4
z^{3}=a^{3}\left(w^{3}\right)^{2}+b^{3}+3 a^{2} b w^{3} \cdot w^{2}+3ab^2.\omega^3.\omega
z^{3}=a^{3}+b^{3}+3 a^{2} b w^{2}+3 a b^{2} w..(iii)
Adding (i),(ii) and (iii)
\left.x^{3}+y^{3}+z^{3}=3 a^{3}+3 b^{3}+3 a^{2} b(1+\omega)+w^{2}\right)+3 a b^{2}\left(1+w^{2}+\omega\right)
=3\left(a^{3}+b^{3}\right)+3 a^{2} b(0)+3 a b^{2} (0)
x^{3}+y^{3}+z^{3}=3\left(a^{3}+b^{3}\right)
If x+y+z=0 then
x^{3}+y^{3}+z^{3}=3 xxyz
x+y+z=a+b+a w+b w^{2}+a w^{2}+b w
=a\left(1+w+w^{2}\right)+b\left(1+w^{2}+w\right)
=a(0)+b(0)
x+y+z=0
x^{3}+y^{3}+z^{3}=3(a+b)\left(a w+b w^{2}\right)\left(a w^{2}+b w\right)
=3(a+b)\left[a^{2} \omega^{3}+a b \omega^{2}+a b \omega^{4}+b^{2} \omega^{3}\right]
=3(a+b)\left[a^{2}+a b w^{2}+a b w^{3} \cdot w+b^{2}\right]
=3(a+b)\left(a^{2}+a b w^{2}+a b w+b^{2}\right)
=3(a+b)\left[a^{2}+a b\left(\omega^{2}+\omega\right)+b^{2}\right]
x^{3}+y^{3}+z^{3}=3(a+b)\left[a^{2}+a b(-1)+b^{2}\right]
=3(a+b)\left(a^{2}-a b+b^{2}\right)
x^{3}+y^{3}+z^{3}=3\left(a^{3}+b^{3}\right)
Question 9
If \left(a+b \omega+c \omega^{2}\right)^{2}+\left(a \omega \pm b \omega^{2}+c\right)^{2}+\left(a \omega+b+c \omega^{2}\right)^{2}=0 prove that a=c or a+c=2bSol :
a^{2}+b^{2} w^{2}+c^{2} b^{4}+2 a b w+2 b c w^{3}+2 c a w^{2}+a^{2} \omega^{2}+b^{2} \omega^{4}+c^{2}+2 a b \omega^{3}+2 b c \omega^{2}+2 c a \omega+a^{2} \omega^{2}+b^{2}+c^{2} \omega^{4}+2 a b \omega+2 b c \omega^{2}+2 c a \omega^{3}=0
a^{2}(1-1-w-1-w)+b^{2}\left(w^{2}+w+1\right)+c^{2}(w+1+w)+2 a b(w+1+w)+2 b c(1-1-w-1-w)+2 c a\left(w^{2}+w+1\right)=0
-a^{2}(1+2 w)+c^{2}(1+2 w)+2 a b(1+2 w)-2 b c(1+2 w) =0
\left[-a^{2}+c^{2}+2 a b-2 b c\right](1+2 w)=0
-a^{2}+c^{2}+2 a b-2 b c=0
c^{2}-a^{2}-2 b c+2 a b=0
(c-a)(c+a)-2 b(c-a)=0
c-a=0
c=a
and
c+a-2b=0
c+a=2b
Question 10
Sol :Let
\alpha=\omega \beta=\omega^{2}
x y z=(a+b)(a \alpha+b \beta)(a \beta+b \alpha)
=(a+b)\left(a w+b w^{2}\right)\left(a w^{2}+b w\right)
=(a+b)\left(a^{2} w^{3}+a b w^{2}+a b w^{4}+b^{2} w^{3}\right]
=(a+b)\left[a^{2}+a b w^{2}+a b w+b^{2}\right]
x y z=(a+b)\left[a^{2}+a b\left(w^{2}+w\right)+b^{2}\right]
x y 2=(a+b)\left[a^{2}+a b(-1)+b^{2}\right]
x y z=(a+b)\left(a^{2}-a b+b^{2}\right)
=a^{3}+b^{3}
Question 11
If \left(1+x+x^{2}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{2 n} x^{2 n} then prove that a_{0}+a_{3}+a_{6}+\ldots=3^{n-1}Sol :
\left(1+x+x^{2}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots,+a_{2 n} x^{2 n}
x=1
\left(1+1+1^{2}\right)^{n}=a_{0}+a_{1}(1)+a_{2}(r)^{2}+a_{3}(1)^{3}+\ldots+a_{2 n}(1)^{2n}
3^{n}=a_{0}+a_{1}+a_{2}+a_{3}+\cdots-\cdots+a_{2 n}..(i)
x=\omega ,
\left(1+\omega+\omega^{2}\right)^{n}=a_{0}+a_{1} \omega+a_{2} \omega^{2}+a_{3} \omega^{3}+\ldots-+a_{2 n} \omega^{2 n}
0=a_{0}+a_{1} \omega+a_{2} \omega^{2}+a_{3}+-\quad+a_{2 n} w^{2 n}..(ii)
x=\omega^{2}
\left(1+w^{2}+w^{4}\right)^{n}=a_{0}+a_{1} w^{2}+a_{2} w^{4}+a_{3} w^{6}+--+ a_{2 n} w^{4 n}
\left(1+w^{2}+w\right)^{n}=a_{0}+a_{1} w^{2}+a_{2} w+a_{3}\left(w^{3}\right)^{2}+--+a_{2 n} w^{4n}
\theta=a_{0}+a_{1} \omega^{2}+a_{2} \omega+a_{3}+\ldots+a_{2 n} \omega^{4n}..(iii)
adding (i) , (ii) and (iii)
3^{n}=3 a_{0}+a_{1}\left(1+\omega+\omega^{2}\right)+a_{2}\left(1+\omega^{2}+\omega\right)+3 a_{3}+3 a_{6}+.....
3^{n}=3 a_{0}+a_{1}(0)+a_{2}(0)+3 a_{3}+3 a_{6}+....
3^{n}=3 a+3 a_{3}+3 a_{6}+\dots
3^{n}=3\left(a_{0}+a_{3}+a_{6}+\dots\right)
\frac{3^{n}}{3^{1}}=a_{0}+a_{3}+a_{6}+\cdots
3^{n-1}=a_{0}+a_{3}+a_{6}+\dots
Yeah Boii maza aa gya
ReplyDeleteThank You So Much
Aage question and solution
ReplyDeleteSolution
ReplyDelete