KC Sinha Mathematics Solution Class 11 Chapter 12 रैखिक असमिकाएँ (Linear Inequalities) Exercise 12.1

Exercise 12.1

Question 1

If x is a non-negative integer then solve
2-3x<5-4x
Sol :

Adding both sides 4x

2-3x+4x<5-4x+4x

2+x<5

Subtracting both sides 2

2+x-2<5-2

x<3

x={0,1,2}

[]

ALTERNATE METHOD

2-3x<5-4x

-3x+4x<5-2

x<2


Question 2

Solve 2(x-2)<3x-2, $x \in\{-2,-1,0,1,2,3,4\}$

Also show the solution set on the number line

Sol :

2(x-2)<3x-2

2x-4<3x-2

Adding both sides 4

2x-4+4<3x-2+4

2x<3x+2

Subtracting both sides 3x

2x-3x<3x+2-3x

-x<2

Multiplying both sides -1

x>-2

x={-1,0,1,2,3,4}

[]


Question 3

Solve (a) 30x<200 (b) 5x-3<3x+1 when
(i) x is integer
(ii) x is a natural number
Sol :
30x<200

Dividing both sides by 30

$\dfrac{30 x}{30}<\dfrac{200}{30}$

$x<\dfrac{20}{3}$

$x<6 \dfrac{2}{3}$

(i) 
x={...-3,-2,-1,0,1,2,3,4,5,6.}

(ii) 
x={1,2,3,4,5,6}


Question 4

Solve 
(a) 3x+5<x-7 (b) 5x-3<3x+1 when

(i) x is integer
(ii) x is a real number

Sol :

3x+5<x-7

Subtracting both sides by 5

3x+5-5<x-7-5

3x<x-12

Subtracting both sides x

3x-x<x-12-x

2x<-12

Dividing both sides by x

$\dfrac{2x}{x}<\dfrac{-12}{2}$

x<-6

(i)
x={...-9,-8,-7}

(ii) 
xϵ(-∞,-6)


Question 7

Solve the following inequations :
(i) 2-3x≥2(x+6)
Sol :
 2-3x≥2x+12

Subtracting both side 2x

 2-3x-2x≥2x+12-2x

2-5x≥12

Subtracting both side 2

2-5x-2≥12-2

-5x≥10

Dividing both sides by -5

$\frac{-5 x}{-5} \leq \frac{10}{-5}$

x≤-2

xϵ(-∞,-2)

(ii) 2(2x+3)-10<6(x-2)
Sol :
4x+6-10<6x-12

4x-4<6x-12

Adding both side 4

4x-4+4<6x-12+4

4x<6x-8

Subtracting 6x both sides

4x-6x<6x-8-6x

-2x<-8

Dividing with -2 both sides

$\frac{-2x}{-2}<\frac{-8}{-2}$

x>4

xϵ(4,∞)


(iii) -(x-3)+4>-2x+5
Sol :
-x+3+4>-2x+5

-x+7>-2x+5

-x+7>-2x+5

Subtracting both sides with 7

-x+7-7>-2x+5-7

-x>-2x-2

Adding both sides 2x

-x+2x>-2x-2+2x

x>-2

xϵ(-2,∞)


Question 8

Solve the following inequations:

(i) $\frac{3(x-2)}{5} \geq \frac{5(2-x)}{3$
Sol :
$15 \times \frac{3(x-2)}{5} \geq 15 \times \frac{5(2-x)}{3}$

9(x-2)≥25(2-x)

9x-18≥50-25x

Adding both sides 25x

9x-18+25x≥50-25x+25x

34x-18≥50

Adding both sides 18

34x-18+18≥50+18

34x≥68

Dividing both sides by 34

$\frac{34 x}{34}\ge\frac{68}{34}$

x≥2

xϵ(2,∞)


(ii) $\frac{11-2 x}{5} \geq \frac{9-3 x}{8}+\frac{3}{4}, x \in \mathrm{N}$
Sol :
$\frac{11-2 x}{5} \geq \frac{9-3 x+6}{8}$

$\frac{11-2 x}{5} \geq \frac{15-3 x}{8}$

Multiplying both sides by 40

$\frac{40(11-22)}{5} \geq 40\left(\frac{15-3 x}{8}\right)$

88-16x≥75-15x

Adding both sides 15x

88-16x+15x≥75-15x+15x

88-x≥75

Subtracting 88 both sides

88-x-88≥75-88

-x≥-13

Multiplying both sides by -1

x≤13

x={1,2,3,4,.....13}


Question 9

Solve the following inequations

(i) $\frac{3}{x-2}<0$
Sol :
[]

∴ x-2<0

Adding both sides 2

x-2+2<0+2

x<2

[]=(-∞,2)


(ii) $-\frac{1}{x+2}>0$
Sol :
[]

∴ x+2<0

Subtracting both sides 2

x+2-2<0-2

x<-2

[]=(-∞,-2)


Question 10

Solve the following inequations :
(i) $\frac{x-3}{x+5}>0$
Sol :
=x-3>0 and x+5>0
or
x-3<0 and x+5<0

=x>3 and x>-5
or
x<3 and x<-5

=x>3
or
x<-5

[]


(ii) $\frac{x-3}{x-5}>0$
Sol :
x-3>0 and x-5>0
or
x-3<0 and x-5<0

=x>3 and x>5
or
x<3 and x<5

=x>5
or
x<3

[]




Question 11

Solve the following inequations
(i) $\frac{x-1}{x-3}<1$
Sol :
Subtracting both sides with 1

$\frac{x-1}{x-3}-1<1-1$

$\frac{x-1-(x-3)}{x-3}<0$

$\frac{x-1-x +7}{x-3}<0$

$\frac{2}{x-3}<0$

[]

∴ x-3<0

x<3

[]=(-∞,3)


(ii) $\frac{x+1}{x-7} \geq 2$
Sol :
Subtracting both sides 2

$\frac{x+1}{x-7}-2 \geq 2-2$

$\frac{x+1-2(x-7)}{x-7} \geq 0$

$\frac{x+1-2 x+14}{x-7} \geq 0$

$\frac{-x+15}{x-7} \geq 0$

=-x+15≥0 and x-7>0
or
-x+15≤0 and x-7<0

=x≤15 and x>7
or
x≥15 and x<7

=7<x≤15
or
not possible


[]= (7,15]


No comments:

Post a Comment

Contact Form

Name

Email *

Message *