Exercise 11.1
Solve the following equations by factorization method
Question 1
$2 x^{2}+3=0$Sol :
$2 x^{2}=-3$
$x^{2}=-\frac{3}{2}$
$x=\pm \sqrt{\frac{-3}{2}}=\pm \sqrt{\frac{3}{2}} i$
ALTERNATE METHOD
$2 x^{2}+3=0$
$(\sqrt{2} x)^{2}-(\sqrt{3} i)^{2}=0$
$\left(\sqrt{2} x+\sqrt 3 i\right)(\sqrt{2} x-\sqrt{3} i)=0$
$\sqrt{2} x+\sqrt3 i=0$
$\sqrt 2 x=-\sqrt 3 i$
$x=\frac{-\sqrt{3}}{2}i$
and $\sqrt 2 x-\sqrt 3i=0$
$\sqrt2x=\sqrt3i$
$x=\frac{\sqrt{3}}{2}i$
Question 2
$x^{2}+x+1=0$Sol :
$x^{2}+2 \cdot x \cdot \frac{1}{2}+\left(\frac{1}{2}\right)^{2}+1-\left(\frac{1}{2}\right)^{2}=0$
$\left(x+\frac{1}{2}\right)^{2}+1-\frac{1}{4}=0$
$\left(x+\frac{1}{2}\right)^{2}+\frac{4-1}{4}=0$
$\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}=0$
$\left(x+\frac{1}{2}\right)^{2}-\left(\frac{\sqrt{3}}{2}i\right)^{2}=0$
$\left(x+\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)\left(x+\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)=0$
$x+\frac{1}{2}-\frac{\sqrt3}{2} i=0$
$x=-\frac{1}{2}+\frac{\sqrt 3}{2}i$
and $x+\frac{1}{2}+\frac{\sqrt{3}}{2} i=0$
$x=-\frac{1}{2}-\frac{\sqrt{3}}{2}i$
∴ $x=-\frac{1}{2} \pm \frac{\sqrt 3}{2} i$
Question 3
$x^{2}+2 x+5=0$Sol :
$x^{2}+2 \cdot x \cdot 1+1^{2}+5-1^{2}=0$
$(x+1)^{2}+5-1=0$
$(x+1)^{2}+4=0$
$(x+1)^{2}-(2 i)^{2}=0$
(x+1-2i)(x+1+2i)=0
x+1-2i=0
x=-1+2i
and x+1+2i=0
x=-1-2i
∴ x=-1±2i
ALTERNATE METHOD
$x^{2}+2 \cdot x \cdot 1+1^{2}+5-1^{2}=0$
$(x+1)^{2}+5-1=0$
$(x+1)^{2}+4=0$
$(x+1)^{2}=-4$
$x+1=\pm \sqrt{-4}$
x+1=±2i
x=-1±2i
Question 4
$x^{2}-4 x+7=0$Sol :
$x^{2}-2 \cdot x \cdot 2+2^{2}+7-2^{2}=0$
$(x-2)^{2}+3=0$
$(x-2)^{2}-(\sqrt{3} i)^{2}=0$
Question 5
$x^{2}-4 x+13=0$Question 6
$9 x^{2}-12 x+20=0$Sol :
$(3x)^2-2 \cdot 3 x \cdot 2+2^{2}+20-2^{2}=0$
$(3 x-2)^{2}+11=0$
Question 7
Solve the following equations by using the general expression for roots of a quadratic equation:$2 x^{2}-\sqrt{3} x+1=0$
Sol :
$x=\frac{-b \pm \sqrt{4 a c-b^{2}}}{2a}i$
a=2 ,$b=-\sqrt{3}$ , c=1
$=\frac{-(-\sqrt{3}) \pm \sqrt{4 \times 2 \times 1-(-\sqrt{3})^{2}}}{2 \times 2}i$
$x=\frac{\sqrt{3} \pm \sqrt{8-3}}{4}i$
$x=\frac{\sqrt{3} \pm \sqrt{5} i}{4}$
$=\frac{\sqrt{3}}{4} \pm \frac{\sqrt{5}}{4}i$
Question 8
$17 x^{2}-8 x+1=0$Sol :
a=17 , b=-8 , c=1
$x=\frac{-b \pm \sqrt{4 a c-b^{2}}}{2a}i$
$=\frac{-(-8) \pm \sqrt{4 \times 17 \times 1-(-8)^{2}}}{2 \times 17}i$
$x=\frac{8 \pm \sqrt{68-64}}{34}i$
$2=\frac{8 \pm \sqrt{4}}{34}i$
$x=\frac{8 \pm 2 i}{34}$
$x=\frac{2(4 \pm i)}{34}$
$=\frac{4}{17} \pm \frac{1}{17}$
Question 12
$9 x^{2}+4=0$Sol :
a=9 , b=0 , c=4
$x=\frac{-b \pm \sqrt{4 a c-b^{2}}}{2 a}i$
$=\frac{-0 \pm \sqrt{4 \times 9 \times 4-0^{2}}}{2 \times 9}i$
$x=\frac{\pm \sqrt{144}}{18}i$
$x=\pm \frac{12 i}{18}$
$=\pm \frac{2}{3} i$
Question 17
$\sqrt{3} x^{2}-\sqrt{2} x+3 \sqrt{3}=0$Sol :
$a=\sqrt{3}$, $b=-\sqrt{2}$ ,$c=3 \sqrt{3}$
$x=\frac{-b \pm \sqrt{4 a c-b^{2}}}{2 a}i$
$x=\frac{-(-\sqrt{2}) \pm \sqrt{4 \times \sqrt{3} \times 3 \sqrt{3}-(-\sqrt{2})^{2}}}{2 \sqrt{3}}i$
$x=\frac{\sqrt{2} \pm \sqrt{36-2}}{2 \sqrt{3}}i$
$x=\frac{\sqrt{2} \pm \sqrt{34}}{2 \sqrt{3}}i$
Question 27
$x^{2}-2 x+\frac{3}{2}=0$Sol :
$\frac{2 x^{2}-4 x+3}{2}=0$
$2 x^{2}-4 x+3=0$
a=2 , b=-4 , c=3
$x=\frac{-b \pm \sqrt{4 a c-b^{2}}}{2 a}i$
$x=\frac{-(-4) \pm \sqrt{4 \times 2 \times 3-(-4)^{2}}}{2 \times 2}i$
$x=\frac{4 \pm \sqrt{24-16}}{4}i$
$x=\frac{4 \pm \sqrt{8} i}{4}$
$=\frac{4 \pm 2 \sqrt{2} i}{4}$
$x=\frac{2(2 \pm \sqrt{2} i)}{4}$
$x=\frac{2 \pm \sqrt{2} i}{2}$
$x=1 \pm \frac{\sqrt{2}}{2} i$
Question 28
$x^{2}+\frac{x}{\sqrt{2}}+1=0$Sol :
$\frac{\sqrt{2} x^{2}+x+\sqrt{2}}{\sqrt{2}}=0$
$\sqrt 2 x^{2}+x+\sqrt2=0$
$a=\sqrt{2}$ , b=1 , $c=\sqrt{2}$
$x=\frac{-b \pm \sqrt{4 a c-b^{2}}}{2 a}i$
$x=\frac{-1 \pm \sqrt{4 \times \sqrt{2} \times \sqrt{2}-1^{2}}}{2 \sqrt{2}}$
$x=\frac{-1 \pm \sqrt{8-1}}{2 \sqrt{2}}i$
$x=\frac{-1 \pm \sqrt{7} i}{2 \sqrt{2}}$
Question 30
$x^{2}+x+\frac{1}{\sqrt{2}}=0$Sol :
$\frac{\sqrt{2} x^{2}+\sqrt{2} x+1}{\sqrt{2}}=0$
$\sqrt{2} x^{2}+\sqrt{2} x+1=0$
$a=\sqrt{2}$, $ b=\sqrt{2}$, c=1
$x=\frac{-b \pm \sqrt{4 a c-b^{2}}}{2 a}i$
$x=\frac{-\sqrt{2} \pm \sqrt{4 \sqrt{2} \times 1-(\sqrt{2})^{2}}i}{2 \sqrt{2}}$
$x=\frac{-\sqrt{2} \pm \sqrt{4 \sqrt{2}-2}}{2 \sqrt{2}}i$
$x=\frac{\sqrt{2} \pm \sqrt{2(2 \sqrt{2}-1)}}{2 \sqrt{2}}i$
$x=\sqrt2\left(\frac{-1 \pm \sqrt{2 \sqrt{2}-1}i}{2 \sqrt{2}}\right)$
$x=-\frac{1 \pm \sqrt{2 \sqrt{2}-1}}{2}$
Question 31
$\sqrt{5} x^{2}+x+\sqrt{5}=0$Sol :
$a=\sqrt{5}$ ,b=1, $c=\sqrt{5}$
$x=\frac{-b \pm \sqrt{4 a c-b^{2}}}{2 a}i$
$x=\frac{-1 \pm \sqrt{4 \times \sqrt{5} \times \sqrt{5}-1^{2}}i}{2 \times \sqrt{5}}$
$x=\frac{-1 \pm \sqrt{20-1}}{2 \sqrt{5}}i$
$x=\frac{-1 \pm \sqrt{19}}{2 \sqrt{5}}i$
Bahut sara questions nhi diye hai esme
ReplyDeletePlease update questions
10 exercise ka questionkaha hai
ReplyDelete12.2
ReplyDelete