Exercise 7.1
Question 1
Find the principal solution of the following trigonometric equations :(i) $\sin x=\dfrac{1}{2}$
Sol :
$\sin x=\frac{1}{2}$
$\sin x=\sin \frac{\pi}{6}$
[$\sin \theta=\sin \alpha \Rightarrow$
$\theta=n \pi+(-1)^{n} \alpha, n \in z$]
$x=n \pi+(-1)^{n} \frac{\pi}{6}, n \in z$
$0 \leq x<\frac{3 60^{\circ}}{2}$
Principal solution :
when n=0 , $x=\frac{\pi}{6}$
when n=1 , $x=\pi - \frac{\pi}{6}$
(ii) tan x=-1
Sol :
$\tan x=-\tan \frac{\pi}{4}$
$\tan x=\tan \left(\pi-\frac{\pi}{4}\right)$
$\tan x=\tan \frac{3 \pi}{4}$
[when $\tan \theta=\tan \alpha$ , then
$\theta=n \pi+\alpha, n \in z$]
$x=n \pi+\frac{3 \pi}{4}, n \in z$
Principal value :
$x=\pi-\frac{\pi}{4}=\frac{3 \pi}{4}$
$x=2 \pi-\frac{\pi}{4}= \frac{7 \pi}{4}$
(iii) $\cot x=\frac{1}{\sqrt{3}}$
Sol :
(iv) $\sec x=-\frac{2}{\sqrt{3}}$
Question 2
(i) $\cos \theta=\frac{1}{2}$Sol :
$\cos \theta=\frac{1}{2}$
$\cos \theta=\cos \frac{\pi}{3}$
[if $\cos \theta=\cos \alpha$ then ,
$\theta=2 n \pi \pm \alpha, n \in z$ ]
$\theta=2 n \pi \pm \frac{\pi}{3}, n \in z$
(ii) $\sin \theta=-1$
Sol :
$\sin \theta=\sin \left(-\frac{\pi}{2}\right)$
[if $\sin \theta=\sin \alpha$ then ,
$\theta=n \pi+(-1)^{n}, \alpha n\in z$ ]
$\theta=n \pi+(-1)^{n} \cdot\left(\frac{-\pi}{2}\right), n \in z$
$\theta=n \pi+(-1)^{n+1} \cdot\left(\frac{\pi}{2}\right) \cdot n \in z$
(iii) $3 \tan ^{2} \theta=1$
Sol :
$\tan ^{2} \theta=\frac{1}{3}$
$\tan ^{2} \theta=\left(\frac{1}{\sqrt{3}}\right)^{2}$
$\tan ^{2} \theta=\tan ^{2} \frac{\pi}{6}$
[if $\tan ^{2} \theta=\tan ^{2} \alpha$ then ,
$\theta=n \pi \pm \alpha, n \in z$ ]
$\theta=n \pi \pm \frac{\pi}{6}, n \in z$
(iv) $2 \sin \theta=\sqrt{3}$
(v) $\sin x=-\frac{\sqrt{3}}{2}$
Sol :
$\sin x=-\sin \frac{\pi}{3}$
$\sin x=\sin \left(\pi+\frac{\pi}{3}\right)$
$\sin x=\sin \frac{4 \pi}{3}$
$x=n \pi+(-1)^{n} \frac{4 \pi}{3}, n \in z$
Question 3
Sol :$\sin \theta=1$
$\sin \theta=\sin \frac{\pi}{2}$
$\theta=\frac{\pi}{2}, \frac{5 \pi}{2}, \frac{9\pi}{2}$
or
$-\frac{3 \pi}{2},-\frac{7 \pi}{2}, \frac{-11\pi}{2}$
$\therefore \quad \theta=(4 n+1) \frac{\pi}{2}, n \in z$
Question 4
(i) cosmx+cosnx=0Sol :
$\cos C+\cos D=2 \cos \frac{C+D}{2} \cos \frac{C-D}{2}$
2 \cos \frac{m x+n x}{2} \cos \frac{m x-n x}{2}=0
$\cos \frac{(m+n) x}{2} \cos \frac{(m-n) x}{2}=0$
$\cos \left(\frac{m+n}{2}\right) x=0$
$\frac{(m+n) x}{2}=(2 r+1) \frac{\pi}{2}, r \in 2$
$x=\frac{(2 x+1)}{m+n} \pi, r \in z$
$\cos \left(\frac{m-n}{2}\right) x=0$
$\frac{(m-n)}{2} x=(2 r+1) \frac{\pi}{2}, r \in z$
$x=\frac{(2 r+1) \pi}{m-n}, r \in z$
$\therefore x=\frac{(2 r+1) \pi}{m \pm n}, r \in z$
(ii) tanx.tan4x=1
Sol :
0=1-tanx.tan4x
$1-\frac{\sin x \sin 4 x}{\cos x \cos 4 x}=0$
$\frac{\cos x \cos 4 x-\sin x \sin 4 x}{\cos x \cos 4 x}=0$
$\frac{\cos (x+4x)}{\cos x \cos 4 x}=0$
cos5x=0
$5 x=(2 n+1) \frac{\pi}{2}, n \in z$
$x=(2 n+1) \frac{\pi}{10}, n \in z$
(iii) tan5θ=cot2θ
Sol :
0=cot2θ-tan5θ
$0=\frac{\cos 2 \theta}{\sin 2 \theta}-\frac{\sin 5 \theta}{\cos 5 \theta}$
$0=\frac{\cos 5 \theta \cos \theta-\sin \theta \sin 2 \theta}{\sin 2 \theta \cos 5 \theta}$
$0=\frac{\cos (5 \theta+2 \theta)}{\sin 2 \theta \cos 5 \theta}$
0=cos7θ
$7 \theta=(2 n+1) \frac{\pi}{2}, n \in I$
$\theta=(2 n+1) \frac{\pi}{14},n\in I$
(iv) $\tan x=-\tan \left(x+\frac{\pi}{3}\right)$
Sol :
$\tan x=\tan \left[2 \pi-\left(x+\frac{\pi}{3}\right)\right]$
$\tan x=\tan \left(\frac{5 \pi}{3}-x\right)$
$x=n \pi+\frac{5 \pi}{3}-x, n \in z$
$2 x=n \pi+\frac{5 \pi}{3}, n \in z$
$x=\frac{n \pi}{2}+\frac{5 x}{6}, n \in z$
Question 5
Sol :$\tan (\pi \cos \theta)=\cot (\pi \sin \theta)$
$\tan (\pi \cos \theta)=\tan \left[\frac{\pi}{2}-\pi \sin \theta\right]$
$\pi \cos \theta=\frac{\pi}{2}-\pi \sin \theta$
$\pi \sin \theta+\pi \cos \theta=\frac{\pi}{2}$
$\pi(\sin \theta+\cos \theta)=\frac{\pi}{2}$
$\sin \theta+\cos \theta=\frac{1}{2}$
Question 6
(i) $\sin x+\cos x=\sqrt{2}$Sol :
$\frac{\sin x+\cos x}{\sqrt{2}}=1$
$\sin x \cdot \frac{1}{\sqrt{2}}+\cos x \cdot \frac{1}{\sqrt{2}}=1$
$\sin x \cdot \frac{1}{\sqrt{2}}+\cos x \cdot \frac{1}{\sqrt{2}}=1$
$\sin x+\frac{\pi}{4}+\cos x \cos \frac{\pi}{4}=1$
$\cos \left(x-\frac{\pi}{4}\right)=\cos 0$
$x-\frac{\pi}{4}=2 n \pi \pm 0, n \in z$
$a-\frac{\pi}{4}=2 n \pi , n \in z$
$x=2 n x+\frac{\pi}{4}, n \in z$
$x=\frac{8 n \pi+\pi}{4}, n \in z$
$x=(8 n+1) \frac{\pi}{4}, n\in z$
Question 7
$2 \cos x+\sin x=1$Sol :
[] $r \sin \alpha=2, r \cos \alpha=1$
[]
$r^{2} \sin ^{2} \alpha+r^{2} \cos ^{2} \alpha=2^{2}+1^{2}$
$r^{2}\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)=5$
$r=\sqrt{5}$
$r \sin \alpha \cos x+r \cos \alpha \sin x=1$
$r(\sin \alpha \cos x+\cos \alpha \sin x)=1$
$\sqrt{5} \sin(x+\alpha)=1$
$\sin (x+\alpha)=\frac{1}{\sqrt{5}}$
sin(x+ɑ)=cosɑ
$\sin (x+\alpha)=\sin \left(\frac{\pi}{2}-\alpha\right)$
$x+\alpha=n \pi+(-1)^{n} \cdot\left(\frac{\pi}{2}-\alpha\right), n \in z$
[]
$x+\alpha=n x+\frac{\pi}{2}-\alpha, n \in z_{1}$
$x=\frac{2 n \pi+\pi}{2}-2 \alpha, n \in z_1$
$x=(2 n+1) \frac{\pi}{2}-2 \alpha, n \in z_1$
[]
$\cos \alpha=\frac{1}{\sqrt{5}}$
$x+\alpha=n x-\left(\frac{\pi}{2}-\alpha\right), n \in z_{2}$
$x+\alpha=n \pi-\frac{\pi}{2}+\alpha, n \in z_{2}$
$x=\frac{2 n \pi-\pi}{2}, n \in z_{2}$
$x=(2 n-1) \frac{\pi}{2}, n \in z_2$
Question 8
Sol :$\cos 2 \theta-\sin 2 \theta=\cos \theta-\sin \theta-1$
$2 \cos ^{2} \theta-1-2 \sin \theta \cos \theta=\cos \theta-\sin \theta-1$
$2 \cos \theta(\cos \theta-\sin \theta)=\cos \theta-\sin \theta$
$2 \cos \theta =1$
$\cos \theta =\frac{1}{2}$
$\cos \theta= \cos \frac{\pi}{3}$
$\theta=2 n \pi \pm \frac{\pi}{3}, n \in z$
$\theta=\frac{5 \pi}{3}, \frac{7 \pi}{3}, \frac{8 \pi}{3}$
$\theta=300^{\circ},420^{\circ},480^{\circ}$
Question 9
(i) sinx+cosx+secx+cosecx=0Sol :
$\sin x+\cos x+\frac{1}{\cos x}+\frac{1}{\sin x}=0$
$\sin x+\cos x+\frac{\sin x+\cos x}{\cos x \sin x}=0$
$\left(\sin x+\cos x\left(1+\frac{1}{\cos x \sin x}\right)=0\right.$
sinx+cosx=0
sinx=-cosx
$\frac{\sin x}{\cos x}=-1$
tanx=-1
$\tan x=-\tan \frac{\pi}{4}$
$x=n \pi+\left(-\frac{\pi}{4}\right) \quad n \in z$
$x=n \pi-\frac{\pi}{4}, n \in z$
(ii) cos3θsin3θ+sin3θcos3θ=0
Sol :
$\left(4 \cos ^{3} \theta-3 \cos \theta\right) \sin^{3} \theta+\left(3 \sin \theta-4 \sin ^{3} \theta\right) \cos ^{3} \theta=0$
$4 \cos^{3} \theta -\sin ^{3} \theta-3 \cos \sin ^{3} \theta+3 \sin \theta \cos ^{3} \theta-4 \sin ^{3} \theta \cos ^{3} \theta=0$
$3 \sin \theta \cos \theta\left(\cos ^{2} \theta-\sin ^{2} \theta\right)=0$
sinθcosθcos2θ=0
$\frac{1}{2}(2 \sin \theta \cos \theta) \cos 2 \theta=0$
$\frac{1}{2} \sin 2 \theta \cos 2 \theta=0$
sin2θcos2θ=0
$\frac{1}{2}(2 \sin 2 \theta \cos 2 \theta)=0$
sin2(2θ)=0
sin4θ=0
$4 \theta=n \pi, n \in z$
$\theta=\frac{n \pi}{4}, n\in z$
Question 10
(i) tanθ+tan2θ+√3tanθ.tan2θ=√3Sol :
tanθ+tan2θ=√3-√3tanθtan2θ
tanθ+tan2θ=√3(1-tanθ.tan2θ)
$\frac{\tan \theta+\tan 2 \theta}{1-\tan \theta \tan 2 \theta}=\sqrt{3}$
tan(θ+2θ)=√3
$\tan (\theta+2 \theta)=\sqrt{3}$
$\tan 3 \theta=\tan \frac{\pi}{3}$
$3 \theta=n \pi+\frac{\pi}{3}, n \in z$
$\theta=\frac{n \pi}{3}+\frac{\pi}{9} \quad, n \in z$
$\theta=\frac{3 n \pi+\pi}{9}, n \in z$
$\theta=(3 n+1) \frac{\pi}{9}, n\in z$
(ii) tanx+tan2x+tanx.tan2x=1
Sol :
tanx+tan2x=1-tanx.tan2x
$\frac{\tan x+\tan 2 x}{1-\tan x \tan 2 x}=$
$\tan 3 x=\tan \frac{\pi}{4}$
$3 x=n \pi+\frac{\pi}{4} \quad, n \in z$
$x=\frac{n \pi}{3}+\frac{\pi}{12}, n \in z$
$x=\frac{4 n \pi+\pi}{12}, n \in z$
$=(4 n+1) \frac{\pi}{12}, n \in z$
(iii) tanx+tan4x+tan7x=tanx.tan4x.tan7x
Sol :
tanx+tan2x=-tan3x+tanx.tan2x.tan3x
tanx+tan2x=-tan3x(1-tanx.tan2x)
$\frac{\tan x+\tan 2 x}{1-\tan x \tan 2 x}=-\tan 3 x$
tan3x=-tan3x
2tan3x=0
tan3x=0
3x=n𝜋 , n𝜀z
$x=\frac{n \pi}{3}, n \in z$
(iv) tanx+tan2x+tan3x=tanx.tan2x.tan3x
Sol :
Question 11
(i) 2sin2x+sinx=3 , (0°≤x≤1000°)Sol :
2sin2x+sinx-3=0
2sin2x+3sinx-2sinx-3=0
sinx(2sinx+3)+(2sinx+3)=0
(2sinx+3)(sinx-1)
CASE-I
2sinx+3=0
$\sin x=-\frac{3}{2}$
Not possible because
-1≤sinx≤-1
CASE-II
sinx-1=0
six=1
$\sin x=\sin \frac{\pi}{2}$
$x=n \pi+(-1)^{n} \frac{\pi}{2}, n \in$
x=90° , 450° , 810°
(ii) 2cos2x-cosx=3 , (0°≤x≤1000°)
Sol :
2cos2x-cosx-3=0
2cos2x-3cosx+2cosx-3=0
cosx(2cosx-3)+1(2cosx-3)=0
(2cosx-3)(cosx+1)=0
CASE-I
2cosx-3=0
$\cos x=\frac{3}{2}$
Not possible because
-1≤cosx≤1
CASE-II
cosx+1=0
cosx=-1
cosx=cos𝜋
[if cosθ=cos𝛼
then θ=2n𝜋± 𝛼 , n 𝝐z]
x=2n𝜋± 𝛼 , n 𝝐z
x=180° , 540° , 900°
(iii) 2sin2x+sin2x2x=2
Sol :
2sin2x+(2sinxcosx)2=2
2sin2x+4sin2xcos2x=2
2(sin2x+2sin2xcos2x)=2
sin2x+2sin2x(1-sin2x)=1
sin2x+2sin2x-2sin4x=1
3sin2x-2sin4x=1
0=2sin4x-3sin2x+1
2sin4x-2sin2x-sin2x+1=0
2sin2x(sin2x-1)-1(sin2x-1)=0
(sin2x-1)(2sin2x-1)=0
CASE-I
sin2x-1=0
sin2x=12
$\sin ^2x=\sin ^{2} \frac{\pi}{2}$
$x=n \pi \pm \frac{\pi}{2}, n \in z$
$x=\frac{2 n \pi \pm \pi}{2}, n \in z$
$x=(2 n \pm 1) \frac{\pi}{2}, n \in z$
CASE-II
2sin2x-1=0
2sin2x=1
$\sin ^{2} x=\left(\frac{1}{\sqrt{2}}\right)^{2}$
$\sin^{2} x=\sin ^{2} \frac{\pi}{4}$
$x=n \pi \pm \frac{\pi}{4}, n \in z$
(iv) 2cos2x+3sinx=0
Question 12
(i) tan2x+cot2x=2Sol :
sec2-1+cosec2x-1=2
sec2x+cosec2x=4
$\frac{1}{\cos ^{2} x}+\frac{1}{\sin^{2} x}=4$
$\frac{\sin ^{2} x+\cos ^{2} x}{\cos ^{2} x \sin ^{2} x}=4$
1=4cos2x.sin2x
1=(2sinx.cosx)2
1=sin22x
$\sin ^{2} \frac{\pi}{2}=\sin^{2} 2 x$
$2 x=n x \pm \frac{\pi}{2}, n \in z$
$2 x=\frac{2 n\pi \pm \pi}{2}, n \in z$
$2 x=(2 n \pm 1) \frac{\pi}{2}, n \in z$
$x=(2 n \pm 1) \frac{\pi}{4}, n\in z$
(ii) tan2x=3cosec2x-1
Sol :
sec2x-y=3cosec2x-1
$\frac{1}{\cos ^{2} x}=\frac{3}{\sin ^{2} x}$
$\frac{\sin ^{2} x}{\cos ^{2} x}=3$
tan2x=(√3)2
$\tan ^{2} x=\tan ^{2}\left(\frac{\pi}{3}\right)$
$x=n \pi \pm \frac{\pi}{3}, n \in z$
Question 13
(i) cos6x+cos4x=sin3x+sinxSol :
$\cos C+\cos D=2 \cos \frac{C+D}{2} \cos \frac{C-D}{2}$
$\sin C+\sin D=2 \sin \frac{C+D}{2} \cos \frac{C-D}{2}$
$2 \cos \frac{6 x+4 x}{2} \cos \frac{6 x-4 x}{2}=2 \sin 2 \frac{3 x+x}{2} \cos \frac{3 x-x}{2}$
cos5x.cosx=sin2xcosx
cos5x=sin2x
$\cos 5 x=\cos \left(\frac{\pi}{2}-2 x\right)$
$5 x=2 n \pi \pm\left(\frac{\pi}{2}-2 x\right) , n \in z$
$7 x=\frac{4 n \pi+\pi}{2}, n \in z$
$7 x=(4 n+1) \frac{\pi}{2}, n+z$
CASE-I
$5 x=2 n \pi+\left(\frac{\pi}{2}-2 x\right) , n\in z$
$5x=2 n \pi+\frac{\pi}{2}-2 x$
$x=(4 n+1) \frac{\pi}{14}, n \in z$
CASE-II
$5 x=2 n \pi-\left(\frac{\pi}{2}-2 x\right) , n\in z$
$5 x=2 n \pi-\frac{\pi}{2}+2 x , n\in z$
$3 x=2 n \pi-\frac{\pi}{2}, n \in z$
$3 x=\frac{4 n \pi-\pi}{2}, n \in z$
$3 x=(4n-1) \frac{\pi}{2}, n\in 2$
$x=(4n -1) \frac{\pi}{6}, n \in z$
(ii) cos5x+cos3x+cosx=0
Sol :
$2 \cos \frac{5 x+x}{2} \cos \frac{5 x-x}{2}+\cos 3 x=0$
2cos3xcos2x+cos3x=0
cos3x(2cos2x+1)=0
CASE-I
cos3x=0
$3 x=(2 n+1) \frac{\pi}{2} n \in z$
$x=(2 n+1) \frac{\pi}{6}, n\in z$
CASE-II
2cos2x+1=0
2cos2x=-1
$\cos 2 x=-\frac{1}{2}$
$\cos 2 x=-\cos \frac{\pi}{3}$
$2 x=2 n \pi \pm\left(\frac{\pi}{3}\right), n \in z$
$x=n \pi \pm \frac{\pi}{6} \quad, n\in z$
Question 14
(i) sinx+sin2x+sin3x=cosx+cos2x+cos3xSol :
$2 \sin \frac{3 x+x}{2} \cos \frac{3 x-x}{2}+\sin 2 x=2 \cos \frac{3 x+x}{2} \cos \frac{3 x-x}{2}+\cos 2 x$
2sin2xcosx+sin2x=2cos2xcosx+cos2x
sin2x(2cosx+1)=cos2x(2cosx+1)
tan2x=1
$\tan2x=\tan\frac{\pi}{4}$
$2 x=n \pi+\frac{\pi}{4}, n \in z$
$x=\frac{n \pi}{2}+\frac{\pi}{8}, n\in z$
$=\frac{4 n \pi+\pi}{8}, n \in z$
$x=(4 n+1) \frac{\pi}{8}, n \in z$
(ii) 2sinx.sin3x=1
Sol :
2sinx.sin3x=1
cos(x-3x)-cos(x+3x)=1
cos2x-cos4x=1
cos2x=1+cos4x
cos2x=1+cos2(2x)
cos2x=2xos22x
0=2cos22x-cos2x
0=(2cos2x-1)cos2x
CASE-I
cos2x=0
$2 x=(2 n+1) \frac{\pi}{2}, n\in z$
$x=(2 n+1)\frac{\pi}{4}, n\in z$
CASE-II
2cos2x-1=0
2cos2x=1
$\cos 2 x=\frac{1}{2}$
$\cos 2 x=\cos \frac{\pi}{3}$
$2 x=2 n \pi \pm \frac{\pi}{3}, n \in z$
$x=n \pi \pm \frac{\pi}{8} , n\in z$
Question 15
(i) cos9x.cos7x=cos5x.cos3xSol :
2cos9x.cos7x=2cos5x.cos3x
cos(9x+7x)+cos(9x-7x)=cos(5x+3c)-cos(5x-3x)
cos16x+cos2x=cos8x+cos2x
cos16x-cos8x=0
$-2 \sin \frac{16 x+8 x}{2} \sin \frac{16 x-8 x}{2}=0$
sin12x.sin4x=0
CASE-I
sin12x=0
12x=n𝜋 , n𝜀z
$x=\frac{n \pi}{12}, n \in z$
CASE-II
sin4x=0
4x=n𝜋 , n𝜀z
$x=\frac{n \pi}{4}, n\in z$
(ii) sin5x.cos3x=sin9x.cos7x
Sol :
No comments:
Post a Comment