KC Sinha Mathematics Solution Class 11 Chapter 14 Binomial Theorem ( द्विपद प्रमेय ) Exercise 14.5

Exercise 14.5

Question 1

यदि (1+x)n=C0+C1.x+C2.x2+...+Cn.xn ,तो साबित कीजिए कि
[If (1+x)n=C0+C1.x+C2.x2+...+Cn.xn  , show that]
(i) 8C1+8C2+8C3+...+8C8=255
(ii) 8C1+8C3+8C5+...+8C7=128
(iii) (1+nC1+nC2+nC3+...+nCn)n=1+2nC1+2nC2+2nC3+...+2nC2n
(iv) (1+nC1+nC2+nC3+...+nCn)5=1+5nC1+5nC2+5nC3+...+5nC5n
(v) C0+5.C1+9.C2+13.C3+..+(4n+1)Cn=(2n+1)2n
(vi) 1-(1-x)C1+(1+2x)C2-(1+3x)C3+...=0
(vii) 3.C1+7.C2+11.C2+..+(4n-1)Cn=(2n-1)2n+1
Sol :
(i)
L.H.S
8C1+8C2+8C3+...+8C8
=28-1
=256-1
=255

(ii)
L.H.S
8C1+8C3+8C5+...+8C7
=28-1
=27
=128

(iii)
L.H.S
(1+nC1+nC2+nC3+...+nCn)n
= (2n)2
= 22n

R.H.S
1+2nC1+2nC2+2nC3+...+2nC2n
= 22n

(v)
दिए गए श्रेणीः 
C0+5.C1+9.C2+13.C3+..+(4n+1)Cn

श्रेणी का r वाँ पद=(4r+1)nCr
=4rnCr+nCr
Tr=4r.n-1Cr-1+nCr

C0+5.C1+9.C2+13.C3+..+(4n+1)Cn=$\sum^n_{r=1}$4n.n-1Cr-1+$\sum^n_{r=0}$

=4n$\sum^n_{r=1}$n+1Cr+1+$\sum^n_{r=0}$nCr

=4n[n-1C0+n-1C1+n-1C2+...+n-1Cn-1]+[nC0+nC2+nCn]

=4n.2n-1+2n

$=4n.\frac{2}{2}+2^n$

=(2n+1)2n

(vi)

1-(1-x)C1+(1+2x)C2-(1+3x)C3+...=0

=(-1)r. (1+rx).nCr
=(-1)rnCr(-1)r.x.r.nCr
=(-1)rnCr(-1)r-1.x.n.nCr

1-(1-x)C1+(1+2x)C2-(1+3x)C3+...=$\sum^n_{r=0}$(-1)r.nCr+$\sum^n_{r=1}$(-1)r-1.x.n.n-1Cr-1

=$\sum^n_{r=0}$(-1)r.nCr+nx$\sum^n_{r=0}$(-1)r-1.n-1Cr-1

=[nC0-nC1+nC2-nC3+..(-1)n.nCr]+nx[n-1C0-n-1C1+n-1C2+..+(-1)n.n-1Cn-1]

=0+nx(0)

=0

Question 2

यदि (1+x)n=C0+C1.x+C2.x2+...+Cn.xn ,तो साबित कीजिए कि
(i) $\frac{C_0}{1}-\frac{C_1}{2}+\frac{C_2}{3}..+(-1)^n.\frac{C_n}{n+1}=\frac{1}{n+1}$
Sol :
दिया गया श्रेणी है:
$\frac{C_0}{1}-\frac{C_1}{2}+\frac{C_2}{3}..+(-1)^n.\frac{C_n}{n+1}$

r वाँ पद Tr=(-1)r-1$\frac{^nC_{r-1}}{r}$

$=(-1)^{r-1}\frac{^{n+1}C_r}{n+1}$

अब , $\frac{C_0}{1}-\frac{C_1}{2}+\frac{C_2}{3}..+(-1)^n.\frac{C_n}{n+1}=\sum^{n+1}_{r=1}$(-1)r-1.$\frac{^{n+1}C_r}{n+1}$

$=\frac{1}{n+1}\sum^{n+1}_{r=1}$(-1)r-1.n+1Cr

$=\frac{1}{n+1}$[n+1C1-n+1C2+n+1C3+..(-1)n.n+1Cn+1]

$=\frac{1}{n+1}$[n+1C0+n+1C1-n+1C3+..(-1)n.n+1Cn+1+n+1C0]

$=\frac{1}{n+1}$[-(n+1C0+n+1C1-n+1C3+..(-1)n+1.n+1Cn+1+n+1C0)]

$=\frac{1}{n+1}$[-0+n+1C0]

$=\frac{1}{n+1}[1]=\frac{1}{n+1}$


(ii) $C_0+\frac{C_2}{3}+\frac{C_4}{5}+\dots =\frac{2^n}{n+1}$
Sol :
दिया गया श्रेणी:
$C_0+\frac{C_2}{3}+\frac{C_4}{5}+\dots =\frac{2^n}{n+1}$

r वाँ पद Tr$=\frac{^nC_{2r}}{2r+1}=\frac{^{n+1}C_{2r+1}}{n+1}$

अतः $C_0+\frac{C_2}{3}+\frac{C_4}{5}+\dots =\sum^{n+1}_{r=0} \frac{^{n+1}C_{2r+1}}{n+1}$

$=\frac{1}{n+1} \sum^{n+1}_{r=0}$.n+1C2r+1

$=\frac{1}{n+1}$[n+1C1+n+1C3+n+1C5+..+0]

$=\frac{1}{n+1}(2^{n+1-1})$

$=\frac{2^n}{n+1}$

Question 3

यदि (1+x)n=C0+C1.x+C2.x2+...+Cn.xn ,तो साबित कीजिए कि

(i) C0C2+C1C3+..Cn-2Cn$=\frac{(2n)!}{(n+2)!(n-2)!}$
Sol :
(1+x)n=C0+C1.x+C2.x2+...+Cn.xn..(i)

(x+1)n=C0.xn+C1.xn-1+C2.xn-2+C3.xn-3...+nCn.x0..(ii)

समीकरण (i) तथा (ii) को गूणा करके xn-2 के गुणांको को लेने पर,

(1+x)2n मे xn-2 का गुणांक C0C2+C1C3+C2C4+...+Cn-2Cn..(i)

2nCn-2=C0C2+C1C3+C2C4+...+Cn-2Cn

$\frac{(2n)!}{(n-2)!(n+2)!}=$C0C2+C1C3+C2C4+...+Cn-2Cn

(ii) nC0+n+1C1+n+1C2+...nCn.n+1Cn+1$=\frac{(2n+1)!}{(n+1)!n!}$
Sol :
(1+x)n=nC0+n+1C1.x1+n+1C2.x2+...nCn.xn..(i)

(1+x)n+1=n+1C0.xn+1.n+1C1.xn+n+1C2.xn-1+...n+1Cn+1.x0..(ii)

समीकरण (i) तथा (ii) मे गुणा करके xके गुणांको को लेने पर,

(1+x)2n+1 k. xका गुणांक=nC0+n+1C1+nC1+n+1C2+...nCn.n+1Cn+1

2n+1Cn=nC0+n+1C1+nC1+n+1C2+...nCn.n+1Cn+1

$\frac{(2n+1)!}{n!(n+1)!}$=nC0+n+1C1+nC1+n+1C2+...nCn.n+1Cn+1

Question 4

साबित कीजिए कि (1+x-3x2)2163 के विसतार मे गुणांको का योग -1 है ।
Sol :
माना (1+x-3x2)2163=a0+a1x+a2x2+..+a6489 .x6489
x=1 , रखने पर,

(1+x-3)2163=a0+a1(1)+a2(1)2+..+a6489 .(1)6489

(-1)2163=a0+a1+a2+..+a6489 

-1=a0+a1+a2+..+a6489

Question 5

यदि (If) (1+x-2x2)6=1+a1.x+a2.x2+...+a12x12 तो दिखलाइए कि (show that) a2+a4+a6+..+a12=31
Sol :
(1+x-2x2)6=1+a1.x+a2.x2+...+a12x12

x=1 पर,

(1+1-2)6=1+a1.(1)+a2.(1)2+...+a12(1)12

0=1+a1+a2.+...+a12

x=-1 पर,

[1-1-2(-1)2]6=1+a1.(-1)+a2.(-1)2+...+a12(-1)12

(-2)6=1-a1+a2+...+a12

64=1-a1+a2+...+a12..(ii)

समीकरण (i) तथा (ii) से ,

$\begin{aligned}0&=1+a_1+a_2+\dots +a_{12}\\64&=1+a_1+a_2+\dots +a_{12}\\ \hline 64&=2+2a_2+2a_4+\dots +2a_{12}\end{aligned}$

64=2(1+a2+a4+..+a12)

32=1+a2+a4+..+a12

31=a2+a4+..a12

No comments:

Post a Comment

Contact Form

Name

Email *

Message *