Processing math: 0%

KC Sinha Solution Class 11 Chapter 25 सीमा का अस्तित्व (Existence of Limit) Exercise 25.1

 Exercise 25.1

Question 1

यदि (If) f(x)=x2+x+2, जब(when) x<1
=x4+3,जब(when)x>1

तो क्या \lim _{x \rightarrow 1} f(x) का अस्तित्व है।(then does \lim _{x \rightarrow 1} f(x) exist?)

Sol :

L.H.L

\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1}\left(x^{2}+x+2\right)

=12+1+2

=4


R.H.L

\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1}\left(x^{4}+3\right)

=14+3

=4

\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=4

\lim _{x \rightarrow 1} f(x) exist

\lim _{x \rightarrow 1} f(x)=4


Question 2

यदि (If) f(x)=x3,जब(when)x<-1
=x5,जब(when) x>-1
=-1, जब(when) x=-1

तो \lim _{x \rightarrow-1} f(x) ज्ञात करे।(then find \lim _{x \rightarrow-1} f(x))

Sol :

L.H.L

\lim _{x \rightarrow-1^{-}} f(2)=\lim _{x \rightarrow-1}\left(x^{3}\right)

=(-1)3

=-1

R.H.L
\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1}\left(x^{5}\right)

=(-1)5

=-1

\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{+}} f(x)=-1

\lim _{x \rightarrow-1} f(x) exist

\lim _{x \rightarrow-1} f(x)=-1


Question 3

ज्ञात करे(Find) \lim _{x \rightarrow 2} \phi(x),जहाँ (where)
ф(x)=5; जब(when) x≠2
=3,(when)x=2
Sol :
L.H.L
\lim _{x \rightarrow 2^{-}} \phi(x)=\lim _{x \rightarrow 2}(5)=5

R.H.L
=\lim_{x\rightarrow 2^+}\phi(x)=\lim _{x \rightarrow 2} 5=5

\lim _{x \rightarrow 2^-} \phi(x)=\lim _{x \rightarrow 2^{+}} \phi(x)=5

\lim _{x \rightarrow 2} \phi(x) exist

\lim _{x \rightarrow 2} \phi(x)=5


Question 4

(i) \lim _{x \rightarrow 0} f(x), ज्ञात कीजिए

Evaluate \lim _{x \rightarrow 0} f(x), जहाँ(where) f(x)=\left\{\begin{aligned} \frac{x}{|x|}, & x \neq 0 \\ 0, & x=0 \end{aligned}\right.
Sol :
L.H.L
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{x}{|x|}

=\lim _{x \rightarrow 0} \frac{x}{-x}=-1

R.H.L
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{x}{|2|}

=\lim _{x \rightarrow 0} \frac{x}{x}=1

\lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)

\lim _{x \rightarrow 0} f(x) is not exist


Question 5

साबित करे कि (prove that) \lim _{x \rightarrow 1} \frac{x^{2}-1}{|x-1|} का अस्तित्व नही है।(does not exist)
Sol :
L.H.L
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \frac{x^{2}-1}{|x-1|}

=\frac{1}{x-1} \frac{x^{2}-1^{2}}{-(x-1)}

=\lim _{x \rightarrow 1} \frac{(x-1)(x+1)}{-(x-1)}

=-(1+1)=-2


R.H.L
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \frac{x^{2}-1}{|x-1|}

=\lim _{x \rightarrow 1} \frac{x^{2}-1^{2}}{x-1}

=\lim _{x \rightarrow 1} \frac{(x -1)(x+1)}{x-1}

=1+1
=2

\lim_{x\rightarrow 1^-}f(x) \neq \lim_{x\rightarrow 1^+}f(x)

अतः \lim _{x \rightarrow 1} f(x) का अस्तित्व नही है।


Question 6

यदि (If) f(x)=\left\{\begin{array}{cc}4, & x \geq 3 \\ x+1, & x<3\end{array}\right.
ज्ञात कीजिए (Find) \lim _{x \rightarrow 3} f(x)
Sol :
L.H.L
\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3}(x+1)
=3+1
=4

R.H.L
\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3}(4)=4

\lim_{x \rightarrow 3^-} f(x)=\lim _{x \rightarrow 3^{+}} f(x)=4

\lim _{x \rightarrow 3} f(x) is exist

\lim _{x \rightarrow 3} f(x)=4


Question 8

\lim _{x \rightarrow 5^{+}} f(x) तथा \lim _{x \rightarrow 5^{-}} f(x) निकाले, जहाँ f(x)=|x|-5
(Find \lim _{x \rightarrow 5^{+}} f(x) and \lim _{x \rightarrow 5^{-}} f(x) where f(x)=|x|-5)

Sol :
L.H.L
\lim _{x \rightarrow 5^{-}} f(x)=\lim _{x \rightarrow 5^{-}}|x|-5

=\lim _{x \rightarrow 5}(x-5)

=5-5
=0

R.H.L
\lim _{x \rightarrow 5^{+}} f(x)=\lim _{x \rightarrow 5^{+}}|x|-5

=\lim _{x \rightarrow 5}(x-5)

=5-5
=0

Question 9

\lim _{x \rightarrow 0} f(x) और \lim _{x \rightarrow 1} f(x) ज्ञात कीजिए, जहाँ f(x)=\left\{\begin{array}{ll}2 x+3, & x \leq 0 \\ 3(x+1), & x>0\end{array}\right.
Sol :
At x=0

L.H.L
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0}(2 x+3)

=2(0)+3
=3

R.H.L
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0} 3(x+1)

=3(0+1)
=3
\lim_{x \rightarrow 0^-} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=3

\lim _{x \rightarrow 0} f(x) is exist

\lim_{x\rightarrow 0}=f(x)=3


At x=1

L.H.L
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1} 3(x+1)

=3(1+1)
=3(2)
=6

R.H.L
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1} 3(x+1)

=3(1+1)
=6

\lim_{x\rightarrow1^-}f(x)=\lim _{x \rightarrow 1^+}f(x)=6

\lim _{x \rightarrow 1} f(x) is exist

\lim _{x \rightarrow 1} f(x)=6


Question 10

निम्नलिखित सीमाओ को निकाले यदि उनका अस्तित्व है।
[Find the following limits if they exist]
(i) \lim _{x \rightarrow 1}[x]
Sol :
L.H.L
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}[x]=0

R.H.L
\lim_{x\rightarrow 1^+}f(x)=\lim _{x \rightarrow 1^+}[x]=1

\lim_{x\rightarrow 1^-}f(x)\neq\lim_{x\rightarrow 1^+}f(x)

अतः \lim _{x \rightarrow 1}[x] का अस्तित्व नही है।


(ii) \lim _{x \rightarrow \frac{5}{2}}[x]
Sol :
L.H.L
\lim _{x \rightarrow \frac{5}{2}^+}f(x)=\lim _{x \rightarrow \frac{5}{2}^-}[x]=2

R.H.L
\lim _{x \rightarrow \frac{5}{2}^+}f(x)=\lim_{x\rightarrow \frac{5}{2}^+}[x]=2

\lim _{x \rightarrow \frac{5}{2}^-}[x]=\lim _{x \rightarrow \frac{5}{2}^+}[x]

अतः \lim _{x \rightarrow \frac{5}{2}}[x] is exist

\lim _{x \rightarrow \frac{5}{2}}[x]=2


(iii) \lim _{x \rightarrow \frac{7}{3}}[-x]
Sol :
L.H.L
\lim _{x \rightarrow \frac{7}{3}^-}[-x]=\lim _{x \rightarrow \frac{7}{3}^-}[-x]=-3


R.H.L
\lim _{x \rightarrow \frac{7}{3}^+}[-x]=-3

\lim _{x \rightarrow \frac{7}{3}^{-}}[-x]=\lim _{x \rightarrow \frac{7}{3}^+}[-x]=-3

अतः \lim _{x \rightarrow \frac{2}{3}}[-x] का अस्तित्व है।

\lim _{x \rightarrow \frac{7}{3}}[-x]=-3


Question 11

(i) ज्ञात करे(Find) \lim _{x \rightarrow-1-0} \frac{\sqrt{x^{2}-5 x-6}}{x+3}

(ii) ज्ञात करे(Find) \lim _{x \rightarrow 2^{-}} \frac{x^{2}-4 x+4}{x-2}

Sol :
(i) \lim _{x \rightarrow-1^{-}} \frac{\sqrt{x^{2}-5 x-6}}{x+3}

=\frac{\sqrt{(-1)^{2}-5(-1)-6}}{-1+3}

=\frac{\sqrt{1+5-6}}{2}=\frac{0}{2}

=0


(ii) \lim _{x \rightarrow 2^{-}} \frac{x^{2}-4 x+4}{x-2}

=\lim _{x \rightarrow 2^{-}} \frac{x^{2}-2 \cdot x \cdot 2+2^{2}}{x-2}

=\lim_{x \rightarrow 2^-}\frac{(x-2)^{2}}{2-2}

=2-2
=0

Question 12

यदि (If) f(x)=\frac{\sin 3 x}{x}, जहाँ (where)x<0
=\frac{\tan b x}{x}, जब (when)x>0

तथा \lim _{x \rightarrow 0} f(x) का अस्तित्व है तो b का मान निकाले।
(and \lim _{x \rightarrow 0} f(x) exists, find the value of b)
Sol :
L.H.L
\lim_{x\rightarrow 0^-}f(x)=\lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x} \times 3

=1×3
=3

R.H.L
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0} \frac{\tan b x}{b x} \times b

=1×6
=6

\because \lim _{x \rightarrow 0} f(x) का अस्तित्व है।

\lim_{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)

3=b

Question 13

माना कि(Let) f(x)=\left\{\begin{array}{ll}x+2, & x \leq-1 \\ c x^{2}, & x>-1\end{array}\right.
c का मान निकाले यदि \lim _{x \rightarrow-1} f(x) का अस्तित्व है।
(Find c if \lim _{x \rightarrow-1} f(x) exists)
Sol :
L.H.L
\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1}(x+2)

=-1+2
=1

R.H.L
\lim_{x\rightarrow {-1}^+}f(x)=\lim _{x \rightarrow-1}cx^{2}

=c(-1)2
=c

\lim_{x\rightarrow -1} f(x) का अस्तित्व है।

\lim _{x \rightarrow-1^-} f(x)=\lim _{x \rightarrow-1^{+}} f(x)

1=c

2 comments:

Contact Form

Name

Email *

Message *