Exercise 25.1
Question 1
यदि (If) f(x)=x2+x+2, जब(when) x<1
=x4+3,जब(when)x>1
तो क्या $\lim _{x \rightarrow 1} f(x)$ का अस्तित्व है।(then does $\lim _{x \rightarrow 1} f(x)$ exist?)
Sol :
L.H.L
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1}\left(x^{2}+x+2\right)$
=12+1+2
=4
R.H.L
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1}\left(x^{4}+3\right)$
=14+3
=4
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=4$
$\lim _{x \rightarrow 1} f(x)$ exist
$\lim _{x \rightarrow 1} f(x)=4$
Question 2
यदि (If) f(x)=x3,जब(when)x<-1
=x5,जब(when)
x>-1
=-1, जब(when) x=-1
तो $\lim _{x \rightarrow-1} f(x)$ ज्ञात करे।(then find $\lim _{x \rightarrow-1} f(x)$)
Sol :
L.H.L
$\lim _{x \rightarrow-1^{-}} f(2)=\lim _{x \rightarrow-1}\left(x^{3}\right)$
=(-1)3
=-1R.H.L
$\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x
\rightarrow-1}\left(x^{5}\right)$
$\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{+}} f(x)=-1$
$\lim _{x \rightarrow-1} f(x)$ exist
$\lim _{x \rightarrow-1} f(x)=-1$
ф(x)=5; जब(when) x≠2
=3,(when)x=2
=(-1)5
=-1$\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{+}} f(x)=-1$
$\lim _{x \rightarrow-1} f(x)$ exist
$\lim _{x \rightarrow-1} f(x)=-1$
Question 3
ज्ञात करे(Find) $\lim _{x \rightarrow 2} \phi(x)$,जहाँ (where)ф(x)=5; जब(when) x≠2
=3,(when)x=2
Sol :
L.H.L
$\lim _{x \rightarrow 2^{-}} \phi(x)=\lim _{x \rightarrow 2}(5)=5$
R.H.L
$=\lim_{x\rightarrow 2^+}\phi(x)=\lim _{x \rightarrow 2} 5=5$
$\lim _{x \rightarrow 2^-} \phi(x)=\lim _{x \rightarrow 2^{+}} \phi(x)=5$
$\lim _{x \rightarrow 2} \phi(x)$ exist
$\lim _{x \rightarrow 2} \phi(x)=5$
Question 4
(i) $\lim _{x \rightarrow 0} f(x)$, ज्ञात कीजिएEvaluate $\lim _{x \rightarrow 0} f(x)$, जहाँ(where) $f(x)=\left\{\begin{aligned} \frac{x}{|x|}, & x \neq 0 \\ 0, & x=0 \end{aligned}\right.$
Sol :
L.H.L
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}
\frac{x}{|x|}$
$=\lim _{x \rightarrow 0} \frac{x}{-x}=-1$
R.H.L
R.H.L
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}
\frac{x}{|2|}$
$=\lim _{x \rightarrow 0} \frac{x}{x}=1$
$\lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)$
$=\lim _{x \rightarrow 0} \frac{x}{x}=1$
$\lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)$
$\lim _{x \rightarrow 0} f(x)$ is not exist
Question 5
साबित करे कि (prove that) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{|x-1|}$
का अस्तित्व नही है।(does not exist)
Sol :
L.H.L
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}
\frac{x^{2}-1}{|x-1|}$
$=\frac{1}{x-1} \frac{x^{2}-1^{2}}{-(x-1)}$
$=\lim _{x \rightarrow 1} \frac{(x-1)(x+1)}{-(x-1)}$
=-(1+1)=-2
R.H.L
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}
\frac{x^{2}-1}{|x-1|}$
$=\lim _{x \rightarrow 1} \frac{x^{2}-1^{2}}{x-1}$
$=\lim _{x \rightarrow 1} \frac{(x -1)(x+1)}{x-1}$
=1+1
=2
$\lim_{x\rightarrow 1^-}f(x) \neq \lim_{x\rightarrow 1^+}f(x)$
अतः $\lim _{x \rightarrow 1} f(x)$ का अस्तित्व नही है।
Question 6
यदि (If) $f(x)=\left\{\begin{array}{cc}4, & x \geq 3 \\ x+1, &
x<3\end{array}\right.$
ज्ञात कीजिए (Find) $\lim _{x \rightarrow 3} f(x)$
Sol :
L.H.L
$\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3}(x+1)$
=3+1
=4
R.H.L
$\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3}(4)=4$
$\lim_{x \rightarrow 3^-} f(x)=\lim _{x \rightarrow 3^{+}} f(x)=4$
$\lim _{x \rightarrow 3} f(x)$ is exist
$\lim _{x \rightarrow 3} f(x)=4$
Question 8
$\lim _{x \rightarrow 5^{+}} f(x)$ तथा $\lim _{x \rightarrow 5^{-}} f(x)$
निकाले, जहाँ f(x)=|x|-5
(Find $\lim _{x \rightarrow 5^{+}} f(x)$ and $\lim _{x \rightarrow 5^{-}}
f(x)$ where f(x)=|x|-5)
Sol :
L.H.L
$\lim _{x \rightarrow 5^{-}} f(x)=\lim _{x \rightarrow 5^{-}}|x|-5$
$=\lim _{x \rightarrow 5}(x-5)$
=5-5
=0
R.H.L
$\lim _{x \rightarrow 5^{+}} f(x)=\lim _{x \rightarrow 5^{+}}|x|-5$
$=\lim _{x \rightarrow 5}(x-5)$
=5-5
=0
Question 9
$\lim _{x \rightarrow 0} f(x)$ और $\lim _{x \rightarrow 1} f(x)$ ज्ञात
कीजिए, जहाँ $f(x)=\left\{\begin{array}{ll}2 x+3, & x \leq 0 \\
3(x+1), & x>0\end{array}\right.$
Sol :
At x=0
L.H.L
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0}(2 x+3)$
=2(0)+3
=3
R.H.L
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0} 3(x+1)$
=3(0+1)
=3
$\lim_{x \rightarrow 0^-} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=3$
$\lim _{x \rightarrow 0} f(x)$ is exist
$\lim_{x\rightarrow 0}=f(x)=3$
At x=1
L.H.L
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1} 3(x+1)$
=3(1+1)
=3(2)
=6
R.H.L
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1} 3(x+1)$
=3(1+1)
=6
$\lim_{x\rightarrow1^-}f(x)=\lim _{x \rightarrow 1^+}f(x)=6$
$\lim _{x \rightarrow 1} f(x)$ is exist
$\lim _{x \rightarrow 1} f(x)=6$
Question 10
निम्नलिखित सीमाओ को निकाले यदि उनका अस्तित्व है।
[Find the following limits if they exist]
(i) $\lim _{x \rightarrow 1}[x]$
Sol :
L.H.L
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}[x]=0$
R.H.L
$\lim_{x\rightarrow 1^+}f(x)=\lim _{x \rightarrow 1^+}[x]=1$
$\lim_{x\rightarrow 1^-}f(x)\neq\lim_{x\rightarrow 1^+}f(x)$
अतः $\lim _{x \rightarrow 1}[x]$ का अस्तित्व नही है।
(ii) $\lim _{x \rightarrow \frac{5}{2}}[x]$
Sol :
L.H.L
$\lim _{x \rightarrow \frac{5}{2}^+}f(x)=\lim _{x \rightarrow
\frac{5}{2}^-}[x]=2$
R.H.L
$\lim _{x \rightarrow \frac{5}{2}^+}f(x)=\lim_{x\rightarrow
\frac{5}{2}^+}[x]=2$
$\lim _{x \rightarrow \frac{5}{2}^-}[x]=\lim _{x \rightarrow
\frac{5}{2}^+}[x]$
अतः $\lim _{x \rightarrow \frac{5}{2}}[x]$ is exist
$\lim _{x \rightarrow \frac{5}{2}}[x]=2$
(iii) $\lim _{x \rightarrow \frac{7}{3}}[-x]$
Sol :
L.H.L
$\lim _{x \rightarrow \frac{7}{3}^-}[-x]=\lim _{x \rightarrow
\frac{7}{3}^-}[-x]=-3$
R.H.L
$\lim _{x \rightarrow \frac{7}{3}^+}[-x]=-3$
$\lim _{x \rightarrow \frac{7}{3}^{-}}[-x]=\lim _{x \rightarrow
\frac{7}{3}^+}[-x]=-3$
अतः $\lim _{x \rightarrow \frac{2}{3}}[-x]$ का अस्तित्व है।
$\lim _{x \rightarrow \frac{7}{3}}[-x]=-3$
Question 11
(i) ज्ञात करे(Find) $\lim _{x \rightarrow-1-0} \frac{\sqrt{x^{2}-5
x-6}}{x+3}$
(ii) ज्ञात करे(Find) $\lim _{x \rightarrow 2^{-}} \frac{x^{2}-4
x+4}{x-2}$
Sol :
(i) $\lim _{x \rightarrow-1^{-}} \frac{\sqrt{x^{2}-5 x-6}}{x+3}$
$=\frac{\sqrt{(-1)^{2}-5(-1)-6}}{-1+3}$
$=\frac{\sqrt{1+5-6}}{2}=\frac{0}{2}$
=0
(ii) $\lim _{x \rightarrow 2^{-}} \frac{x^{2}-4 x+4}{x-2}$
$=\lim _{x \rightarrow 2^{-}} \frac{x^{2}-2 \cdot x \cdot 2+2^{2}}{x-2}$
$=\lim_{x \rightarrow 2^-}\frac{(x-2)^{2}}{2-2}$
=2-2
=0
Question 12
यदि (If) $f(x)=\frac{\sin 3 x}{x}$, जहाँ (where)x<0
$=\frac{\tan b x}{x}$, जब (when)x>0
तथा $\lim _{x \rightarrow 0} f(x)$ का अस्तित्व है तो b का मान निकाले।
(and $\lim _{x \rightarrow 0} f(x)$ exists, find the value of b)
Sol :
L.H.L
$\lim_{x\rightarrow 0^-}f(x)=\lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x}
\times 3$
=1×3
=3
R.H.L
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0} \frac{\tan b x}{b x}
\times b$
=1×6
=6
$\because \lim _{x \rightarrow 0} f(x)$ का अस्तित्व है।
$\lim_{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)$
3=b
Question 13
माना कि(Let) $f(x)=\left\{\begin{array}{ll}x+2, & x \leq-1 \\ c
x^{2}, & x>-1\end{array}\right.$
c का मान निकाले यदि $\lim _{x \rightarrow-1} f(x)$ का अस्तित्व है।
(Find c if $\lim _{x \rightarrow-1} f(x)$ exists)
Sol :
L.H.L
$\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1}(x+2)$
=-1+2
=1
R.H.L
$\lim_{x\rightarrow {-1}^+}f(x)=\lim _{x \rightarrow-1}cx^{2}$
=c(-1)2
=c
∵$\lim_{x\rightarrow -1} f(x)$ का अस्तित्व है।
$\lim _{x \rightarrow-1^-} f(x)=\lim _{x \rightarrow-1^{+}} f(x)$
1=c
Sir kuch questions missing hai
ReplyDeleteHii
ReplyDelete