Exercise 25.1
Question 1
यदि (If) f(x)=x2+x+2, जब(when) x<1
=x4+3,जब(when)x>1
तो क्या \lim _{x \rightarrow 1} f(x) का अस्तित्व है।(then does \lim _{x \rightarrow 1} f(x) exist?)
Sol :
L.H.L
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1}\left(x^{2}+x+2\right)
=12+1+2
=4
R.H.L
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1}\left(x^{4}+3\right)
=14+3
=4
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=4
\lim _{x \rightarrow 1} f(x) exist
\lim _{x \rightarrow 1} f(x)=4
Question 2
यदि (If) f(x)=x3,जब(when)x<-1
=x5,जब(when)
x>-1
=-1, जब(when) x=-1
तो \lim _{x \rightarrow-1} f(x) ज्ञात करे।(then find \lim _{x \rightarrow-1} f(x))
Sol :
L.H.L
\lim _{x \rightarrow-1^{-}} f(2)=\lim _{x \rightarrow-1}\left(x^{3}\right)
=(-1)3
=-1R.H.L
\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x
\rightarrow-1}\left(x^{5}\right)
\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{+}} f(x)=-1
\lim _{x \rightarrow-1} f(x) exist
\lim _{x \rightarrow-1} f(x)=-1
ф(x)=5; जब(when) x≠2
=3,(when)x=2
=(-1)5
=-1\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{+}} f(x)=-1
\lim _{x \rightarrow-1} f(x) exist
\lim _{x \rightarrow-1} f(x)=-1
Question 3
ज्ञात करे(Find) \lim _{x \rightarrow 2} \phi(x),जहाँ (where)ф(x)=5; जब(when) x≠2
=3,(when)x=2
Sol :
L.H.L
\lim _{x \rightarrow 2^{-}} \phi(x)=\lim _{x \rightarrow 2}(5)=5
R.H.L
=\lim_{x\rightarrow 2^+}\phi(x)=\lim _{x \rightarrow 2} 5=5
\lim _{x \rightarrow 2^-} \phi(x)=\lim _{x \rightarrow 2^{+}} \phi(x)=5
\lim _{x \rightarrow 2} \phi(x) exist
\lim _{x \rightarrow 2} \phi(x)=5
Question 4
(i) \lim _{x \rightarrow 0} f(x), ज्ञात कीजिएEvaluate \lim _{x \rightarrow 0} f(x), जहाँ(where) f(x)=\left\{\begin{aligned} \frac{x}{|x|}, & x \neq 0 \\ 0, & x=0 \end{aligned}\right.
Sol :
L.H.L
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}
\frac{x}{|x|}
=\lim _{x \rightarrow 0} \frac{x}{-x}=-1
R.H.L
R.H.L
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}
\frac{x}{|2|}
=\lim _{x \rightarrow 0} \frac{x}{x}=1
\lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)
=\lim _{x \rightarrow 0} \frac{x}{x}=1
\lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)
\lim _{x \rightarrow 0} f(x) is not exist
Question 5
साबित करे कि (prove that) \lim _{x \rightarrow 1} \frac{x^{2}-1}{|x-1|}
का अस्तित्व नही है।(does not exist)
Sol :
L.H.L
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}
\frac{x^{2}-1}{|x-1|}
=\frac{1}{x-1} \frac{x^{2}-1^{2}}{-(x-1)}
=\lim _{x \rightarrow 1} \frac{(x-1)(x+1)}{-(x-1)}
=-(1+1)=-2
R.H.L
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}
\frac{x^{2}-1}{|x-1|}
=\lim _{x \rightarrow 1} \frac{x^{2}-1^{2}}{x-1}
=\lim _{x \rightarrow 1} \frac{(x -1)(x+1)}{x-1}
=1+1
=2
\lim_{x\rightarrow 1^-}f(x) \neq \lim_{x\rightarrow 1^+}f(x)
अतः \lim _{x \rightarrow 1} f(x) का अस्तित्व नही है।
Question 6
यदि (If) f(x)=\left\{\begin{array}{cc}4, & x \geq 3 \\ x+1, &
x<3\end{array}\right.
ज्ञात कीजिए (Find) \lim _{x \rightarrow 3} f(x)
Sol :
L.H.L
\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3}(x+1)
=3+1
=4
R.H.L
\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3}(4)=4
\lim_{x \rightarrow 3^-} f(x)=\lim _{x \rightarrow 3^{+}} f(x)=4
\lim _{x \rightarrow 3} f(x) is exist
\lim _{x \rightarrow 3} f(x)=4
Question 8
\lim _{x \rightarrow 5^{+}} f(x) तथा \lim _{x \rightarrow 5^{-}} f(x)
निकाले, जहाँ f(x)=|x|-5
(Find \lim _{x \rightarrow 5^{+}} f(x) and \lim _{x \rightarrow 5^{-}}
f(x) where f(x)=|x|-5)
Sol :
L.H.L
\lim _{x \rightarrow 5^{-}} f(x)=\lim _{x \rightarrow 5^{-}}|x|-5
=\lim _{x \rightarrow 5}(x-5)
=5-5
=0
R.H.L
\lim _{x \rightarrow 5^{+}} f(x)=\lim _{x \rightarrow 5^{+}}|x|-5
=\lim _{x \rightarrow 5}(x-5)
=5-5
=0
Question 9
\lim _{x \rightarrow 0} f(x) और \lim _{x \rightarrow 1} f(x) ज्ञात
कीजिए, जहाँ f(x)=\left\{\begin{array}{ll}2 x+3, & x \leq 0 \\
3(x+1), & x>0\end{array}\right.
Sol :
At x=0
L.H.L
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0}(2 x+3)
=2(0)+3
=3
R.H.L
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0} 3(x+1)
=3(0+1)
=3
\lim_{x \rightarrow 0^-} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=3
\lim _{x \rightarrow 0} f(x) is exist
\lim_{x\rightarrow 0}=f(x)=3
At x=1
L.H.L
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1} 3(x+1)
=3(1+1)
=3(2)
=6
R.H.L
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1} 3(x+1)
=3(1+1)
=6
\lim_{x\rightarrow1^-}f(x)=\lim _{x \rightarrow 1^+}f(x)=6
\lim _{x \rightarrow 1} f(x) is exist
\lim _{x \rightarrow 1} f(x)=6
Question 10
निम्नलिखित सीमाओ को निकाले यदि उनका अस्तित्व है।
[Find the following limits if they exist]
(i) \lim _{x \rightarrow 1}[x]
Sol :
L.H.L
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}[x]=0
R.H.L
\lim_{x\rightarrow 1^+}f(x)=\lim _{x \rightarrow 1^+}[x]=1
\lim_{x\rightarrow 1^-}f(x)\neq\lim_{x\rightarrow 1^+}f(x)
अतः \lim _{x \rightarrow 1}[x] का अस्तित्व नही है।
(ii) \lim _{x \rightarrow \frac{5}{2}}[x]
Sol :
L.H.L
\lim _{x \rightarrow \frac{5}{2}^+}f(x)=\lim _{x \rightarrow
\frac{5}{2}^-}[x]=2
R.H.L
\lim _{x \rightarrow \frac{5}{2}^+}f(x)=\lim_{x\rightarrow
\frac{5}{2}^+}[x]=2
\lim _{x \rightarrow \frac{5}{2}^-}[x]=\lim _{x \rightarrow
\frac{5}{2}^+}[x]
अतः \lim _{x \rightarrow \frac{5}{2}}[x] is exist
\lim _{x \rightarrow \frac{5}{2}}[x]=2
(iii) \lim _{x \rightarrow \frac{7}{3}}[-x]
Sol :
L.H.L
\lim _{x \rightarrow \frac{7}{3}^-}[-x]=\lim _{x \rightarrow
\frac{7}{3}^-}[-x]=-3
R.H.L
\lim _{x \rightarrow \frac{7}{3}^+}[-x]=-3
\lim _{x \rightarrow \frac{7}{3}^{-}}[-x]=\lim _{x \rightarrow
\frac{7}{3}^+}[-x]=-3
अतः \lim _{x \rightarrow \frac{2}{3}}[-x] का अस्तित्व है।
\lim _{x \rightarrow \frac{7}{3}}[-x]=-3
Question 11
(i) ज्ञात करे(Find) \lim _{x \rightarrow-1-0} \frac{\sqrt{x^{2}-5
x-6}}{x+3}
(ii) ज्ञात करे(Find) \lim _{x \rightarrow 2^{-}} \frac{x^{2}-4
x+4}{x-2}
Sol :
(i) \lim _{x \rightarrow-1^{-}} \frac{\sqrt{x^{2}-5 x-6}}{x+3}
=\frac{\sqrt{(-1)^{2}-5(-1)-6}}{-1+3}
=\frac{\sqrt{1+5-6}}{2}=\frac{0}{2}
=0
(ii) \lim _{x \rightarrow 2^{-}} \frac{x^{2}-4 x+4}{x-2}
=\lim _{x \rightarrow 2^{-}} \frac{x^{2}-2 \cdot x \cdot 2+2^{2}}{x-2}
=\lim_{x \rightarrow 2^-}\frac{(x-2)^{2}}{2-2}
=2-2
=0
Question 12
यदि (If) f(x)=\frac{\sin 3 x}{x}, जहाँ (where)x<0
=\frac{\tan b x}{x}, जब (when)x>0
तथा \lim _{x \rightarrow 0} f(x) का अस्तित्व है तो b का मान निकाले।
(and \lim _{x \rightarrow 0} f(x) exists, find the value of b)
Sol :
L.H.L
\lim_{x\rightarrow 0^-}f(x)=\lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x}
\times 3
=1×3
=3
R.H.L
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0} \frac{\tan b x}{b x}
\times b
=1×6
=6
\because \lim _{x \rightarrow 0} f(x) का अस्तित्व है।
\lim_{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)
3=b
Question 13
माना कि(Let) f(x)=\left\{\begin{array}{ll}x+2, & x \leq-1 \\ c
x^{2}, & x>-1\end{array}\right.
c का मान निकाले यदि \lim _{x \rightarrow-1} f(x) का अस्तित्व है।
(Find c if \lim _{x \rightarrow-1} f(x) exists)
Sol :
L.H.L
\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1}(x+2)
=-1+2
=1
R.H.L
\lim_{x\rightarrow {-1}^+}f(x)=\lim _{x \rightarrow-1}cx^{2}
=c(-1)2
=c
∵\lim_{x\rightarrow -1} f(x) का अस्तित्व है।
\lim _{x \rightarrow-1^-} f(x)=\lim _{x \rightarrow-1^{+}} f(x)
1=c
Sir kuch questions missing hai
ReplyDeleteHii
ReplyDelete