Exercise 26.1
Question 1
यदि(If) f x=x2, find f '(2) निकाले ।
Sol :
$\left[f^{\prime}(x)=\lim_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\right]$
$f^{\prime}(2)=\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}$
$=\lim _{h \rightarrow 0} \frac{(2+h)^{2}-2^{2}}{h}$
$=\lim _{h \rightarrow 0} \frac{2^{2}+2 \cdot 2 \cdot h+h^{2}-2^{2}}{h}$
$=\lim _{h\rightarrow 0} \frac{h(4+h)}{h}$
=4+0
=4
Question 2
यदि (If) f x=x3+1, find f '(3) निकाले ।
Sol :
$\left[f^{\prime}(x)=\lim_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\right]$
$f^{\prime}(3)=\lim _{h \rightarrow 0} \frac{(3+h)-f(3)}{h}$
$=\lim _{h \rightarrow 0} \frac{(3+h)^{3}+1-\left(3^{3}+1\right)}{h}$
$=\lim _{h \rightarrow 0} \frac{3^{3}+h^{3}+3 \cdot 3^{2} \cdot h+3 \cdot 3 \cdot h^{2}+1-3^{3}-1}{4}$
$=\lim _{h \rightarrow 0} \frac{ h^{3}+27 h+9 h^{2}}{h}$
$=\lim _{h \rightarrow 0} \frac{h\left(h^{2}+27+9h\right)}{h}$
f '(3)=27
Question 3
यदि (If) f x=x2+2x+7, (find) f '(3) निकाले ।
Sol :
$\left[f^{\prime}(x)=\lim_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\right]$
$f^{\prime}(3)=\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}$
$=\lim _{h \rightarrow 0}\frac{(3+h)^{2}+2(3+h)+7-\left(3^{2}+2(3)+7\right)}{h}$
$=\lim _{h \rightarrow 0} \frac{3^{3}+2 \cdot 3 \cdot h+h^{2}+6+2 h+7-9-6-7}{h}$
$=\lim _{h \rightarrow 0} \frac{6+h^{2}+2 b}{4}$
$=\lim_{h\rightarrow 0}\frac{8 h+h^{2}}{h}$
$=\lim _{h \rightarrow 0} \frac{\operatorname{h}(8+4)}{h}$
=8+0
=8
Question 4
यदि (If) f x=mx+c, (find) f '(0) निकाले ।
$\left[f^{\prime}(x)=\lim_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\right]$
$f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}$
=m
Question 5
यदि (If) f x=3t2+1 ,(find) f '(1) निकाले ।
Sol :
$\left[f^{\prime}(x)=\lim_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\right]$
$f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}$
$=\lim _{h \rightarrow 0} \frac{3(1+h)^{2}+1-\left(3(1)^{2}+1\right)}{h}$
$=\lim _{h \rightarrow 0} \frac{3\left(1+2 h+1^{2}\right)+1-(3+1)}{h}$
$=h_{\rightarrow 0} \frac{3+6h+3 h^{2}+1-3-1}{h}$
$=\lim _{h \rightarrow 0} \frac{h(6+3 h)}{h}$
=6+3(0)
=6
Question 6
x=1 पर x का अवकलज निकाले।
[Find the derivative of x at x=1]
Sol :
Let f x=x
$\left[f^{\prime}(x)=\lim_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\right]$
$f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}$
$= \lim_{h \rightarrow 0} \frac{1+h-1}{h}$
$=\lim _{h \rightarrow 0} \frac{h}{h}=1$
Question 8
x=100 पर 99x का अवकलज निकाले।
[Find the derivative of 99x at x=100]
Sol :
$\left[f^{\prime}(x)=\lim_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\right]$
$f^{\prime}(100)=\lim _{h \rightarrow 0} \frac{f(100+h)-f(100)}{h}$
$=\lim _{h \rightarrow 0} \frac{99(100+h)-99(100)}{h}$
$=\lim _{h \rightarrow 0} \frac{9900+99 h-9900}{h}$
$=\lim _{h \rightarrow 0} \frac{99k}{h}$
=99
Question 9
x=100 पर x2-2 का अवकलज निकाले।
[Find the derivative of x2-2 at x=10]
Sol :
$\left[f^{\prime}(x)=\lim_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\right]$
माना f(x)=x2-2
$f^{\prime}(10)=\lim _{h \rightarrow 0} \frac{f(10+4)-f(10)}{h}$
$=\lim _{h \rightarrow 0}\frac{(10+h)^{2}-2-\left(10^{2}-2\right)}{h}$
$=\lim _{h \rightarrow 0} \frac{10^{2}+2.10.h+h^2-2-10^2+2}{h}$
$=\lim_{h \rightarrow 0} \frac{20 h+h^{2}}{h}$
$=\lim _{h \rightarrow 0} h\left(\frac{20+h}{h}\right)$
=20+0
=20
Question 10
x=0 तथा x=3 पर f(x)=3 का अवकलन निकाले।
[Find the derivative of f (x)=3 at x=0 and x=3]
Sol :
$\left[f^{\prime}(x)=\lim_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\right]$
$f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+4)-f(0)}{h}$
$=\lim _{h \rightarrow 0} \frac{3-3}{h}$
$=\lim _{h \rightarrow 0} \frac{0}{h}$
$=\lim _{h \rightarrow 0} 0$
=0
$f^{\prime}(3)=\lim_{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}$
$=\lim_{h\rightarrow 0}\frac{3-3}{h}$
=0
Question 11
अचर फलन f(x)=a का अवकलन किसी निश्चित वास्तविक संख्या पर निकालें
[Find the derivative of the constant function f(x)=a for a fixed real number]
Sol :
माना c एक निश्चित वास्तवीक संख्या है।
$f^{\prime}(c)=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}$
$=\lim_{h \rightarrow 0} \frac{a-a}{h}$
$=\lim _{h \rightarrow 0} 0$
=0
Question 12
x=0 पर sinx का अवकलन निकाले ।
[Find the derivative of sin x at x=0]
Sol :
माना f(x)=sin x
$f^{\prime}(0)=\lim _{n \rightarrow 0} \frac{f(0+h)-f(0)}{h}$
$=\lim _{h \rightarrow 0} \frac{\sin (0+h)-\sin 0}{h}$
$=\lim _{h \rightarrow 0} \frac{\sinh -0}{h}$
$=\lim _{h \rightarrow 0} \frac{\sin h}{h}$
=1
Question 13
यदि (If) f(x)=x3+7x2+8x-9, (find) f '(4) निकाले ।
Sol :
$f^{\prime}(4)=\lim _{h \rightarrow 0} \frac{f(4+h)}{h}-f(4)$
$=\lim _{h \rightarrow 0}\dfrac{\left[(4+h)^{3}+7(4+h)^{2}+8(4+h)-9\right]-[4^3+7(4)^2+8(4)-9]}{h}$
$=\lim _{h \rightarrow 0} \dfrac{4^3+h^3+3.4^2.h+3.4.h^2+7(4)^2+7.8h+7h^2+32+8h-9-4^3-7(4)^2-32+9}{h}$
$=\lim _{h \rightarrow 0} \frac{h^{3}+48 h+56 h+84+12 h^{2}+7 h^{2}}{h}$
$=\lim _{h \rightarrow 0} \frac{h^{3}+112 h+19 h^{2}}{h}$
$=\lim _{h \rightarrow 0} \frac{h \left(h^{2}+112+19 h\right)}{h}$
=02+112+19(0)
=112
Question 14
यदि (If) f(x)=x3-2x+1, दिखलाएँ कि(show that) f '(2)=10 f '(1)
Sol :
L.H.S
$f^{\prime}(2)=\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}$
$=\lim _{h \rightarrow 0}\dfrac{\left[(2-h)^{3}-2(2+h)+1\right]-\left[2^{3}-2(2)+1\right]}{h}$
$=\lim_{h\rightarrow 0}\dfrac{2^3+h^3.2^2.h+3.2.h^2-4-2h+1-2^3+4-1}{h}$
$=\lim _{h \rightarrow 0} \frac{h^{3}+10 h+6 h^{2}}{h}$
$=\lim _{h \rightarrow 0} \frac{h\left(h^{2}+10+6 h\right)}{h}$
=02+10+6(0)
=10
R.H.S
$10 f^{\prime}(1)=10 \cdot \lim _{h \rightarrow 0} \frac{f(1+4)-f(1)}{h}$
$=10 \cdot \lim _{h \rightarrow 0}\dfrac{\left[(1+4)^{3}-2(1+4)+1\right] -\left(1^{3}-2(1)+1\right]}{h}$
$=10 \lim_{h\rightarrow 0}\dfrac{1^3+h^3+3.1^2.h+3.1.h^2-2-2h+1-1+2-1}{h}$
$=10 \cdot \lim _{h \rightarrow 0} \frac{h^{3}+h+3 h^{2}}{h}$
$=10 \lim_{h\rightarrow 0} \dfrac{h\left(\mathrm{h}^{2}+1+3h\right)}{h}$
=10(02+1+3(0))
=10×1
=10
$f^{\prime}(2)=10 \cdot f^{\prime}(1)$
Question 16
x=-1 पर f(x)=2x2+3x-5 का अवकलन निकाले । साथ ही साबित करे कि f '(0)+3 f '(-1)=0
Sol :
$f^{\prime}(-1)=\lim _{h \rightarrow 0} \frac{f(-1+h)-f(-1)}{h}$
$=\lim _{h \rightarrow 0}\dfrac{\left[2(-1+h)^{2}+3(-1+h)-5\right]-\left[2(-1)^{2}+3(-1]-5\right]}{h}$
$=\lim _{h \rightarrow 0}\dfrac{\left[2(1-2h+h^2)-3+3h-5\right]-\left[2-3-5\right]}{h}$
$=\lim _{h \rightarrow 0} \dfrac{2-4 h+2 h^{2}-3+3 h-5-2+3+5}{h}$
$=\lim _{h \rightarrow 0} \frac{-h+2 h^{2}}{h}$
$=\lim _{h \rightarrow 0} \frac{h(-1+2h)}{h}$
=-1+2(0)
=-1
Question 16
x=-1 पर f(x)=2x2+3x-5 का अवकलन निकाले । साथ ही साबित करे कि f '(0)+3 f '(-1)=0
$=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}$
$=\lim _{h \rightarrow 0} \frac{2 h^{2}+3 h-5-2(0)^{2}-3(0)+5}{h}$
$=\lim _{h \rightarrow 0} \frac{2 h^{2}+3 h}{h}$
$=\lim _{h \rightarrow 0} \frac{h(2 h+3)}{h}$
=2(0)+3
=3
L.H.S
$f^{\prime}(0)+3 f^{\prime}(-1)$
=3+3(-1)
=3-3
=0
Question 17
फलन f के लिए जो f(x)=kx2+7x-4 से परिभाषित है f '(5)=97 तो k निकालेय़
[For the function f given by f(x)=kx2+7x-4 ,f '(5)=97 then find k]
Sol :
f '(5)=97
$\lim _{h \rightarrow 0} \frac{f(5+h)-f(5)}{h}=97$
$\lim _{h \rightarrow 0}\frac{\left[k(5+h)^{2}+7(5+h)-4\right]-\left[k(5)^{2}+7(5)-4\right]}{4}=9$
$\lim _{h \rightarrow 0}\dfrac{\left[k\left(25+10 h+h^{2}\right)+35+7 h-4\right]
-\left[25 h^{2}+35-4\right]}{h}=57$
$\lim_{h\rightarrow 0}\dfrac{25 k+10 k h+k h^{2}+35+7 h-4 -25k-35+4}{h}=97$
$\lim _{h \rightarrow 0} \frac{10 k h+7 h+k h^{2}}{h}=97$
$\lim _{h \rightarrow 0} \frac{h (10 \mathrm{k}+7+\mathrm{kh})}{h}=97$
10k+7+k(0)=97
10k=90
k=9
Question 18
फलन f के लिए जो f (x)=x2+2ax+5 से परिभाषित है, f '(1)=10 तो a निकाले ।
[For the function f given by f (x)=x2+2ax+5, f '(1)=10 find a ]
Question 19
यदि (If) $f(x)=\frac{x-2}{x^{2}-3 x+2}, x \neq 2$
=1, x=2
तो f '(2) निकाले (then find f '(2) ]
Sol :
L.H.D
$f^{\prime}\left(2^{-}\right)=\lim _{h \rightarrow 0} \frac{f(2-h)-f(2)}{-h}$
$=\lim _{h \rightarrow 0} \dfrac{\frac{1}{{2-1-1}}-\frac{1}{2-1}}{-h}$
$=\lim _{h \rightarrow 0} \frac{\frac{1}{1-h}-\frac{1}{1}}{-h}$
$=\lim _{h \rightarrow 0} \frac{\frac{1-(1-h)}{1-h}}{-h}$
$=\lim_{h \rightarrow 0} \frac{\frac{1-1+h}{1-h}}{-h}$
$=\lim _{x \rightarrow 0} \frac{\frac{h}{1-h}}{-h}$
$=\lim_{h\rightarrow 0}\frac{-1}{1-h}=\frac{-1}{1-0}=-1$
R.H.D
$f^{\prime}\left(2\right)=\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}$
$=\lim _{h \rightarrow 0} \frac{\frac{1}{2+h-1}-\frac{1}{2-1}}{h}$
$=\lim _{h \rightarrow 0}\dfrac{ \frac{1}{1+h}- \frac{1}{1}}{h}$
$=\lim _{h \rightarrow 0} \dfrac{\frac{1-(1+h)}{1+h}}{h}$
$=\lim _{h \rightarrow 0} \dfrac{\frac{1-1-h}{1+h}}{h}$
$=\lim _{h \rightarrow 0} \dfrac{\frac{-h}{1+h}}{h}$
$=\frac{-1}{1+0}=-1$
$f^{\prime}(2)=-1$
$f^{\prime}\left(2^{-}\right)=f^{\prime}(2^+)$
Question 20
समय t=0 से शूरू कर एक कण एक सरल रेखा मे इस तरह से चसता है ताकि इसका स्थिति t सेकेण्ड के बाद s(t)=t2-6t+8 मीटर है। इसका चाल t=3 सेकेण्ड पर निकाले ।
Sol :
चाल
$s^{\prime} (3)=\lim _{h \rightarrow 0} \frac{s(3+4)-s(3)}{h}$
$=\lim _{h \rightarrow 0}\dfrac{\left[(3+h)^{2}-6(3+h)+8\right]-\left[3^{2}-6(3)+8\right]}{h}$
$=\lim _{h \rightarrow 0} \dfrac{9+6 h+h^{2}-18-6 h+8-9+18-8}{h}$
$=\lim_{h\rightarrow 0} \frac{h^{2}}{h}$
=0
Question 21
एक कण एक सरल रेखा मे इस तरह से चलता है ताकि इसका स्थिति t सेकेण्ड के बाद
s(t)=6t-t2 है। इसका प्रारंभिक वेग क्या है।
[A particle moves along a line so that at time t, its position is s(t)=6t-t2 .What is its initial velocity?]
Question 22
एक कण एक सरल रेखा मे इस तरह से चलता है ताकि t समय पर इसकी स्थिति $s(t)=\frac{t^{2}+2}{t+1}$ इकाई है। इसका वेग t=3 पर निकाले ।
[A particle moves along a line so that its position at time t is $s(t)=\frac{t^{2}+2}{t+1}$ units.Find its velocity at time t=3 ]
Abhishek bablu
ReplyDelete