Processing math: 0%

KC Sinha Solution Class 12 Chapter 19 Indefinite Integrals (अनिश्चित समाकल) Exercise 19.12

Exercise 19.12

Question 1

(i) \int \frac{dx}{\sqrt{1+4x^2}}
Sol :
Given: I=\int \frac{dx}{\sqrt{1+4x^2}}=\int \frac{dx}{\sqrt{(1)^2+(2x)^2}}

=\frac{dx}{\sqrt{1+(2x)^2}}

\left[\int \frac{dx}{\sqrt{a^2+x^2}}=\log |x+\sqrt{x^2+a^2}|\right]

I=\frac{1}{2}\log (2x+\sqrt{1+4x^2})

I=\frac{1}{2}\log(2x+\sqrt{2x+\sqrt{1+4x^2}})+C


(ii) \int \frac{dx}{\sqrt{9+25x^2}}
Sol :
Given: I=\int \frac{dx}{\sqrt{9-25x^2}}=\int \frac{dx}{\sqrt{(3)^2-(6x)^2}}

\left[\therefore \int \frac{dx}{\sqrt{a^2-x^2}=\sin ^{-1}\frac{x}{a}}\right]

I=\frac{1}{5}\sin^{-1} \frac{5x}{3}+C


Question 2

(i) \int \frac{dx}{\sqrt{x^2+3x+4}}
Sol :
Given: I=\int \frac{dx}{\sqrt{x^2+3x+4}}

=\int \dfrac{dx}{\sqrt{x^2+2x\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+4}}

=\int \dfrac{dx}{\sqrt{x^2+2x\frac{3}{2}+\frac{9}{4}+\frac{7}{4}}}

=\int \dfrac{dx}{\sqrt{\left(x+\frac{3}{2}\right)^2+\left(\frac{\sqrt{7}}{2}\right)^2}}

\left[\int \frac{dx}{\sqrt{a^2+x^2}}=\log |x+\sqrt{x^2+a^2}|\right]

I=\log \left[x+\frac{3}{2}+\sqrt{\left(x+\frac{3}{2}\right)^2+\left(\frac{\sqrt{7}}{2}\right)^2}\right]

I=\log \left[x+\frac{3}{2}+\sqrt{x^2+3x+4}\right]+C


(ii) \int \frac{dx}{\sqrt{2ax-x^2}}
Sol :
Given :
I=\int \frac{dx}{\sqrt{2ax-x^2}}=\int \frac{dx}{\sqrt{2ax-x^2-a^2+a^2}}

I=\int \frac{dx}{\sqrt{a^2-(x^2+a^2-2ax)}}

=\int \frac{dx}{\sqrt{a^2-(x-a)^2}}

\left[\int \frac{dx}{a^2-x^2}=\sin ^{-1}\frac{x}{a}\right]

I=\sin ^{-1}\frac{(x-a)}{a}+C


Question 3

\int \sqrt{3x^2+4x+1}dx
Sol :
Given :
I=\int \sqrt{3x^2+4x+1}dx

=\int \sqrt{3x^2+\frac{3}{3}\times 4x+\frac{3}{3}}dx

I=\int \sqrt{3\left(x^2+\frac{4x}{3}+\frac{1}{3}\right)}

I=\sqrt{3}\int \sqrt{x^2+\frac{4x}{3}+\frac{1}{3}} dx

I=\sqrt{3}\int \sqrt{x^2+2.x.\frac{2}{3}+\frac{4}{3}-\frac{4}{3}+\frac{1}{3}}dx

I=\sqrt{3}\int \sqrt{\left(x+\frac{2}{3}\right)^2-\left(\frac{1}{3}\right)^2}dx

\left[7\int \sqrt{x^2-a^2}dx=\frac{x}{2}\sqrt{x^2-a^2}-\frac{a^2}{2}\log |x+\sqrt{x^2-a^2}|\right]

I=\sqrt{3}\left[\dfrac{\left(x+\frac{2}{3}\right)}{2}\sqrt{\left(x+\frac{2}{3}\right)^2-\left(\frac{1}{3}\right)^2}-\frac{1}{9\times 2}\log \left(x+\frac{2}{3}\right)+\sqrt{\left(x+\frac{2}{3}\right)^2-\left(\frac{1}{3}\right)^2})\right]

I=\sqrt{3}\left[\frac{3x+2}{6}\sqrt{\left(x+\frac{2}{3}\right)^2-\left(\frac{1}{3}\right)^2}-\frac{1}{18}\log \left(x+\frac{2}{3}+\sqrt{\left(x+\frac{2}{3}\right)^2-\left(\frac{1}{3}\right)^2}\right)\right]

I=\sqrt{3}\left[\frac{3x+2}{6}\sqrt{\frac{3x^2+4x+1}{3}}-\frac{1}{18}\log \left(x+\frac{2}{3}\sqrt{\frac{3x^2+4x+1}{3}}\right)\right]+C

I=\sqrt{3}\left[\frac{3x+2}{6}\frac{\sqrt{3x^2+4x+1}}{\sqrt{3}}-\frac{1}{18}\log \left(x+\frac{2}{3}+\sqrt{\frac{3x^2+4x+1}{3}}\right)\right]+C

I=\frac{3x+2}{6}\sqrt{3x^2+4x+1}-\frac{\sqrt{3}}{18}\log \left(x+\frac{2}{3}+\sqrt{\frac{3x^2+4x+1}{3}}\right)+C

Question 4

\int \sqrt{x^2-3x+2} dx
Sol :
Given: I=\int \sqrt{x^2-3x+2} dx

I=\int \sqrt{x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+2}dx

I=\int \sqrt{\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}\right)-\frac{1}{4}} dx

I=\int \sqrt{\left(x-\frac{3}{2}\right)^2-\left(\frac{1}{2}\right)^2}dx

I=\dfrac{\left(x-\frac{3}{2}\right)}{2}\sqrt{\left(x-\frac{3}{2}\right)^2-\left(\frac{1}{8}\right)^2}-\dfrac{\left(\frac{1}{2}\right)^2}{2}\log \left(x-\frac{3}{2}+\sqrt{\left(x-\frac{3}{2}\right)^2-\left(\frac{1}{2}\right)^2}\right)+C

I=\frac{2x.3}{2\times 2}\sqrt{x^2-3x+2}-\frac{1}{8}\log \left(x-\frac{3}{2}+\sqrt{x^2-3x+2}\right)+C

I=\frac{2x.3}{4}\sqrt{x^4-3x+2}-\frac{1}{8}\log \left|\left(x-\frac{3}{2}+\sqrt{x^2-3x+2}\right)\right|+C


Question 5

\int \frac{dx}{\sqrt{10-8x-2x^2}}
Sol :
Given :
I=\int \frac{dx}{10-8x-2x^2}

=\int \frac{dx}{\sqrt{2(5-4x-x^2)}}

=\frac{1}{\sqrt{2}}\int \frac{dx}{\sqrt{5-4x-x^2}}

=\frac{1}{\sqrt{2}}\int \frac{dx}{\sqrt{5-4x-x^2-4+4}}

=\frac{1}{\sqrt{2}}\int \frac{dx}{\sqrt{9-(x^2+4x+4)}}

=\frac{1}{\sqrt{2}}\int \frac{dx}{3^2-(x+2)^2}

\left[\because \int \frac{dx}{\sqrt{a^2-x^2}}=\sin ^{-1}\frac{x}{a}\right]

I=\frac{1}{\sqrt{2}} \sin ^{-1}\left(\frac{x+2}{3}\right)+C


Question 6

\int \frac{dx}{\sqrt{4-2x-2x^2}}
Sol :
Given: I=\int \frac{dx}{\sqrt{4-2x-2x^2}}=\int \frac{dx}{\sqrt{2(2-x-x^2)}}

=\frac{1}{\sqrt{2}\int \frac{dx}{\sqrt{2-x-x^2}}}

=\frac{1}{\sqrt{2}}\int \frac{dx}{\sqrt{2-(x^2+x)}}

=\frac{1}{\sqrt{2}}\int \frac{dx}{\sqrt{2-(x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4})}}

=\frac{1}{\sqrt{2}}\int \frac{dx}{\sqrt{2-(x^2+2.x.\frac{1}{2}+\frac{1}{4})}}

=\frac{1}{\sqrt{2}}\int \frac{dx}{\frac{9}{4}-\left(x+\frac{1}{2}\right)^2}

=\frac{1}{\sqrt{2}}\int \dfrac{dx}{\sqrt{\left(\frac{3}{2}\right)^2-\left(x+\frac{1}{2}\right)^2}}

=\frac{1}{\sqrt{2}}\sin ^{-1}\dfrac{\left(x+\frac{1}{2}\right)}{\frac{3}{2}}+C

=\frac{1}{\sqrt{2}}\sin^{-1}\frac{2x+1}{2\times \frac{3}{2}}+C

=\frac{1}{\sqrt{2}}\sin ^{-1}\frac{(2x+1)}{3}+C


Question 7

\int \frac{dx}{\sqrt{16-2x+2x^2}}
Sol :
Given : I=\int \frac{dx}{\sqrt{16-2x-2x^2}}

=\int \frac{dx}{\sqrt{2(8-x-x^2)}}

=\frac{1}{\sqrt{2}}\int \frac{dx}{\sqrt{8-(x^2+x)}}

=\frac{1}{\sqrt{2}}\int \frac{dx}{\sqrt{8(x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4})}}

=\frac{1}{\sqrt{2}}\int \frac{dx}{\sqrt{8-(x^2+2.x.\frac{1}{2}+\frac{1}{4})+\frac{1}{4}}}

=\frac{1}{\sqrt{2}}\int \dfrac{dx}{\sqrt{\frac{33}{4}-\left(x+\frac{1}{2}\right)^2}}

=\frac{1}{\sqrt{2}}\int \dfrac{dx}{\sqrt{\left(\frac{\sqrt{33}}{2}\right)^2-\left(x+\frac{1}{2}\right)^2}}

=\frac{1}{\sqrt{2}}\sin ^{-1}\dfrac{\left(x+\frac{1}{2}\right)}{\frac{\sqrt{33}}{2}}+C

=\frac{1}{\sqrt{2}}\sin ^{-1}\dfrac{(2x+1)}{2\times \frac{\sqrt{33}}{2}}+C

I=\frac{1}{\sqrt{2}}\sin ^{-1}\frac{(2x+1)}{\sqrt{33}}+C

Question 8

\int \frac{dx}{\sqrt{x^2+2x+2}}
Sol :
Given :
I=\int \frac{dx}{\sqrt{x^2+2x+2}}

=\int \frac{dx}{\sqrt{x^2+2.x.1+1-1+2}}

=\int \frac{dx}{\sqrt{(x^2+2x+1)+1}}

=\int \frac{dx}{\sqrt{(x+1)^2+1^2}}

I=\log \left|(x+1)+\sqrt{(x+1)^2+1}\right|+C

I=\log \left|(x+1)+\sqrt{x^2+2x+2}\right|+C


Question 9

\int \frac{dx}{\sqrt{7-6x-x^2}}
Sol :
Given : I=\int \frac{dx}{\sqrt{7-6x-x^2}}

=\int \frac{dx}{\sqrt{7-(x^2+6x)}}

=\int \frac{dx}{\sqrt{7-(x^2+2.x.3+9-9)}}

=\int \frac{dx}{\sqrt{7-(x^2+2.x.3+9)-9}}

=\int \frac{dx}{\sqrt{16-(x^2+2.x.3+9)}}

=\int \frac{dx}{\sqrt{4^2-(x+3)^2}}

I=\sin ^{-1}\frac{(x+3)}{4}+C


Question 10

\int \frac{dx}{\sqrt{5x^2-2x}}
Sol :
Given : I=\int \frac{dx}{\sqrt{5x^2-2x}}

=\int \frac{dx}{\sqrt{5(x^2-2.x.\frac{1}{5}+\frac{1}{25}-\frac{1}{25})}}

=\frac{1}{\sqrt{5}}\int \frac{dx}{\sqrt{(x^2-2.x.\frac{1}{5}+\frac{1}{25})-\frac{1}{25}}}

=\frac{1}{\sqrt{5}}\int \frac{dx}{\sqrt{\left(x-\frac{1}{5}\right)^2-\left(\frac{1}{5}\right)^2}}

I=\frac{1}{\sqrt{5}}\log \left|\left(x-\frac{1}{5}\right)+\sqrt{\left(x-\frac{1}{5}\right)^2-\left(\frac{1}{5}\right)^2}\right|+C

I=\frac{1}{\sqrt{5}}\log \left|\left(x-\frac{1}{5}\right)+\sqrt{x^2+\frac{1}{25}-2.x.\frac{1}{5}-\frac{1}{25}}\right|+C

I=\frac{1}{\sqrt{5}}\log \left|\left(x-\frac{1}{5}\right)+\sqrt{x^2-\frac{2x}{5}}\right|+C


Question 11

\int \frac{dx}{\sqrt{8+3x+x^2}}
Sol :
Given : I=\int \frac{dx}{\sqrt{8+3x+x^2}}

I=\int \frac{dx}{\sqrt{8-\left(x^2-2x.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)}}

I=\int \frac{dx}{\sqrt{8-\left(x^2-2x.x.\frac{3}{2}+\frac{9}{4}\right)+\frac{9}{4}}}

I=\int \frac{dx}{\sqrt{\frac{41}{4}-\left(x-\frac{3}{2}\right)^2}}

I=\int \dfrac{dx}{\sqrt{\left(\frac{\sqrt{41}}{2}\right)^2-\left(x-\frac{3}{2}\right)^2}}

I=\sin ^{-1} \dfrac{\left(x-\frac{3}{2}\right)}{\frac{\sqrt{41}}{2}}+C

I=\sin^{-1} \dfrac{(2x-3)}{2\times \frac{\sqrt{41}}{2}}+C

I=\sin ^{-1}\dfrac{(2x-3)}{\sqrt{41}}+C


Question 12

\int \frac{dx}{\sqrt{2x-x^2}}
Sol :
Given :
I=\int \frac{dx}{\sqrt{2x-x^2}}

=\int \frac{dx}{\sqrt{2x-x^2-1+1}}

=\int \frac{dx}{\sqrt{1-(x^2-2x+1)}}

=\int \frac{dx}{\sqrt{1-(x-1)^2}}

=\sin ^{-1}\frac{(x-1)}{1}+C

=sin-1(x-1)+C

Question 13

(i) \int \frac{dx}{\sqrt{5-4x+x^2}}
Sol :
Given :
I=\int \frac{dx}{\sqrt{5-4x+x^2}}

=\int \frac{dx}{\sqrt{x^2-2.x.2+4-4+5}}

=\int \frac{dx}{\sqrt{1+(x^2-2.x.2+4)}}

=\int \frac{dx}{\sqrt{1^2+(x-2)^2}}

=\log \left|(x-2)+\sqrt{(x-2)^2+1}\right|+C

=\log \left|(x-2)+\sqrt{x^2-4x+5}+C\right|


(ii) \int \frac{dx}{\sqrt{(2-x)^2+1}}
Sol :
Given :
I=\int \frac{dx}{\sqrt{(2-x)^2+1}}

=\int \frac{dx}{\sqrt{4+x^2-4x+1}}

=\int \frac{dx}{\sqrt{x^2-4x+5}}

I=\log \left|(x-2)+\sqrt{x^2-4x+5}\right|+C

Question 14

(i) \int \frac{dx}{\sqrt{(x-1)(x-2)}}
Sol :
Given :
I=\int \frac{dx}{\sqrt{(x-1)(x-2)}}

=\int \frac{dx}{\sqrt{x^2-2x-x+2}}

=\int \frac{dx}{\sqrt{x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+2}}

=\int \frac{dx}{\sqrt{\left(x^2-2x.\frac{3}{2}+\frac{9}{4}\right)-\frac{1}{4}}}

=\int \frac{dx}{\sqrt{\left(x-\frac{3}{2}\right)^2-\left(\frac{1}{2}\right)^2}}

=\log \left|\left(x-\frac{3}{2}\right)+\sqrt{\left(x-\frac{3}{2}\right)-\left(\frac{1}{2}\right)^2}\right|+C

I=\log \left|\left(\frac{2x-3}{2}\right)+\sqrt{x^2-3x+2}\right|+C


(ii) \int \frac{dx}{\sqrt{(x-1)(2-x)}}
Sol :
Given : I=\int \frac{dx}{\sqrt{(x-1)(2-x)}}

=\int \frac{dx}{\sqrt{2x-x^2-2+x}}

=\int \frac{dx}{\sqrt{3x-x^2-2}}

=\int \frac{dx}{\sqrt{1-x^2+3x-2-1}}

=\int \frac{dx}{\sqrt{1-(x^2-3x+3)}}

=\int \frac{dx}{\sqrt{1-\left(x^2-2x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+3\right)}}

=\int \frac{dx}{\sqrt{1-\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}\right)+\frac{9}{4}-3}}

=\int \frac{dx}{\sqrt{\frac{1}{4}-\left(x-\frac{3}{2}\right)^2}}

=\int \frac{dx}{\sqrt{\left(\frac{1}{2}\right)^2-\left(x-\frac{3}{2}\right)^2}}

=\sin ^{-1} \dfrac{\left(x-\frac{3}{2}\right)}{\frac{1}{2}}+C

=\sin ^{-1}\frac{(2x-3)}{2\times \frac{1}{2}}+C

=sin-1(2x-3)+C

Question 15

\int \frac{dx}{\sqrt{(x-a)(x-b)}}
Sol :
Given :
I=\int \frac{dx}{\sqrt{(x-a)(x-b)}}

=\int \frac{dx}{\sqrt{x^2-bx-ax+ab}}

=\int \frac{dx}{\sqrt{x^2-x(a+b)+ab}}

=\int \dfrac{dx}{\sqrt{x^2-2.x.\frac{(a+b)}{2}-\left(\frac{a+b}{2}\right)^2+ab}}

=\int \dfrac{dx}{\sqrt{\left(x^2-2.x.\frac{(a+b)}{2}+\left(\frac{a+b}{2}\right)^2\right)-\left(\frac{a+b}{2}\right)^2+ab}}

=\int \dfrac{dx}{\sqrt{\left(x-\frac{(a+b)}{2}\right)^2-\frac{(a^2+b^2+2ab)}{4}+ab}}

=\int \dfrac{dx}{\sqrt{\left(x-\frac{(a+b)}{2}\right)^2-\left(\frac{a^2+b^2+2ab}{4}\right)^2+ab}}

=\int \dfrac{dx}{\left(x-\frac{(a+b)}{2}\right)^2-\left(\frac{(a-b)}{2}\right)^2}

=\log \left|\left(x-\frac{(a+b)}{2}\right)+\sqrt{x-\left(\frac{(a+b)}{2})\right)^2-\left(\frac{(a-b)}{2}\right)^2}\right|+C

I=\log \left|\frac{2x-a-b}{2}+\sqrt{(x-a)(x+b)}\right|+C

Question 16

(i) \int \frac{dx}{x^2-16}
Sol :
Given : I=\int \frac{dx}{x^2-16}

I=\frac{1}{2\times 4}\log \left|\frac{x-4}{x+4}\right|+C

=\frac{1}{8}\log \left|\frac{x-4}{x+4}\right|+C


(ii) \int \frac{dx}{x(x^5+3)}
Sol :
Given : I=\int \frac{dx}{x(x^5+3)}

Let x5=z

x=z^{\frac{1}{5}}

then 5x4dx=dz

dx=\frac{dz}{5x^4=\frac{1}{5}\times \frac{1}{z^{\frac{4}{5}}}}dz

Now ,

I=\int \frac{dx}{x(x^5+3)}

=\int \dfrac{1}{5} \times \frac{dz}{z^{4/5}z^{\frac{1}{5}}(z+3)}

=\frac{1}{5}\int \dfrac{dz}{z(z+3)}=\frac{1}{5}\int \frac{dz}{z^2+3z}

=\frac{1}{5}\int \dfrac{dz}{\left(z^2+2.z.\frac{3}{2}+\frac{9}{4}\right)-\frac{9}{4}}

=\frac{1}{5}\int \dfrac{dz}{\left(z+\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2}

=\frac{1}{5}\times \dfrac{1}{2\times \frac{3}{2}}\log \left|\dfrac{z+\frac{3}{2}-\frac{3}{2}}{z+\frac{3}{2}+\frac{3}{2}}\right|+C

=\frac{1}{15}\log \left|\frac{z}{z+3}\right|+C

=\frac{1}{15}\log \left|\frac{x^5}{x^5+3}\right|+C


Question 17

\int \frac{dx}{3x^2+13x-10}
Sol :
Given : I=\int \frac{dx}{3x^2+13x-10}

=\int \dfrac{dx}{3\left(x^2+\frac{13x}{3}-\frac{10}{3}\right)}

=\int \frac{1}{3}\int \dfrac{dx}{\left(x^2+2.x.\frac{13}{6}+\frac{169}{36}-\frac{10}{3}\right)}

=\frac{1}{3} \int \dfrac{dx}{\left(x+\frac{13}{6}\right)^2-\frac{289}{36}}

=\frac{1}{3}\int \frac{dx}{\left(x+\frac{13}{6}\right)^2-\left(\frac{17}{6}\right)^2}

=\frac{1}{3}\times \dfrac{1}{2\times \frac{17}{6}}\log \left|\dfrac{x+\frac{13}{6}-\frac{17}{6}}{x+\frac{13}{6}+\frac{17}{6}}\right|+C

=\frac{1}{17}\log \left|\dfrac{x-\frac{4}{6}}{x+5}\right|+C

=\frac{1}{17}\log \left|\frac{3x-2}{3(x+5)}\right|+C

=\frac{1}{17}[log(3x-2)-log{3(x+5)}]+C

=\frac{1}{17}[log(3x-2)-{log3+log(x+5)}]+C

=\frac{1}{17}[log(3x-2)-log3-log(x+5)]+C

=\frac{1}{17}\log (3x-2)-\frac{1}{17}\log 3-\frac{1}{17}\log (x+5)+C

=\frac{1}{17}\log (3x-2)-\frac{1}{17}\log (x+6)+C

=\frac{1}{17}[log(3x-2)-log(x+5)]+C

I=\frac{1}{17}\log \left|\frac{3x-2}{x+5}\right|+C


Question 18

\int \frac{dx}{x^2-6x+13}
Sol :
Given : I=\int \frac{dx}{x^2-6x+13}

=\int \frac{dx}{x^2-2.x.3+9-9+13}

=\int \frac{dx}{(x^2-2.x.3+9)+4}

=\int \frac{dx}{(x-3)^2+2^2}

I=\frac{1}{2}\tan^{-1}\frac{(x-3)}{2}+C


Question 19

(i) \int \sqrt{4-x^2} dx
Sol :
Given : I=\int \sqrt{4-x^2}

=\int \sqrt{(2)^2-(x)^2}dx

=\frac{x}{2}\sqrt{4-x^2}+\frac{4}{2}\sin^{-1}\frac{x}{2}+C

I=\frac{x\sqrt{4-x^2}}{2}+\frac{2\sin^{-1}x}{2}+C


(ii) \int \sqrt{1-4x^2}
Sol :
Given : I=\int \sqrt{1-4x^2}dx

=\int \sqrt{(1)^2-(2x)^2}dx

=\frac{2x}{2}\sqrt{1-4x^2}+\frac{1}{2}\sin^{-1}\frac{(2x)}{1}+C

=x\sqrt{1-4x^2}+\frac{1}{2}\sin^{-1}(-2x)+C

I=\frac{x\sqrt{1-4x^2}}{2}+\frac{1}{4}\sin^{-1}(2x)+C

Question 20

(i) \int \sqrt{3-2x-x^2}
Sol :
Given : I=\int \sqrt{3-2x-x^2}

=\int \sqrt{3-(x^2+2x)}

=\int \sqrt{3-(x^2+2.x.3+1-1)}

=\int \sqrt{3-(x^2+2x+1)+1}

=\int \sqrt{4-(x^2+2x+1)}

=\int \sqrt{(2)^2-(x+1)^2}

=\frac{(x+1)\sqrt{4-(x+1)^2}}{2}+\frac{4}{2}\sin^{-1}\frac{(x+1)}{2}+C

I=\frac{(x+1)}{2}\sqrt{3-2x-x^2}+2\sin^{-1}\left(\frac{x+1}{2}\right)+C

(ii) \int \sqrt{1-4x-x^2} dx
Sol :
Given : I=\int \sqrt{1-4x-x^2} dx

=\int \sqrt{1-(x^2+4x)}dx

=\int \sqrt{1-(x^2+2x.2+4-4)}dx

=\int \sqrt{1-(x^2+2x.2+4)+4}

=\sqrt{5-(x^2+2.x.2+4)}

=\sqrt{(\sqrt{5})^2-(x+2)^2} dx

=\frac{(x+2)}{2}\sqrt{5-(x+2)^2}+\frac{5}{2}\sin^{-1} \left(\frac{x+2}{\sqrt{5}}\right)+C

=\frac{(x+2)}{2}\sqrt{1-4x-x^2}+\frac{5}{2}\sin^{-1} \left(\frac{x+2}{\sqrt{5}}\right)+C

Question 21

\int \sqrt{1+3x-x^2}dx
Sol :
Given : I=\int \sqrt{1+3x-x^2}dx

=\int \sqrt{1-(x^2-3x)}dx

=\int \sqrt{1-\left(x^2-2x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)}dx

=\int \sqrt{1-\left(x^2-2x.\frac{3}{2}+\frac{9}{4}\right)+\frac{9}{4}}dx

=\int \sqrt{\frac{13}{4}-\left(x-\frac{3}{2}\right)^2}dx

=\int \sqrt{\left(\frac{\sqrt{13}}{2}\right)^2-\left(x-\frac{3}{2}\right)^2}dx

=\dfrac{\left(x-\frac{3}{2}\right)}{2}\sqrt{\left(\frac{\sqrt{13}}{2}\right)^2-\left(x-\frac{3}{2}\right)^2}+\frac{13}{4\times 2}\sin^{-1}\dfrac{x-\frac{3}{2}}{\frac{\sqrt{13}}{2}}+C

=\frac{2x-3}{4}\sqrt{1+3x-x^2}+\frac{13}{8}\sin^{-1}\dfrac{(2x-3)}{\frac{\sqrt{13}}{2}\times 2}+C

I=\frac{(2x-3)}{4}\sqrt{1+3x-x^2}+\frac{13}{8}\sin^{-1} \frac{(2x-3)}{\sqrt{13}}+C


Question 22

\int \sqrt{x^2+4x-5}dx
Sol :
Given : I=\int \sqrt{x^2+4x-5}dx

=\int \sqrt{x^2+2.x.2+4-4-5}dx

=\int \sqrt{(x^2+2.x.2+4)-9}dx

=\int \sqrt{(x+2)^2-(3)^2}

=\frac{(x+2)}{2}\sqrt{(x+2)^2-(3)^2}-\frac{9}{2}\log \left|(x+2)+\sqrt{(x+2)^2-(3)^2}\right|+C

=\frac{x+2}{2}\sqrt{x^2+4x-5}-\frac{9}{5}\log \left|x+2+\sqrt{x^2+4x-5}\right|+C


Question 23

\int \sqrt{x^2+4x+1}dx
Sol :
Given : I=\int \sqrt{x^2+4x+1}dx

=\int \sqrt{x^2+2x.2+4-4+1}dx

=\int \sqrt{(x^2+2.x.2+4)-3}dx

=\int \sqrt{(x+2)^2-(\sqrt{3})^2}dx

=\frac{x+2}{2}\sqrt{(x+2)^2-(\sqrt{3})^2}-\frac{3}{2}\log \left|x+2+\sqrt{(x+2)^2-(\sqrt{3})^2}\right|+C

I=\frac{x+2}{2}\sqrt{x^2+4x+1}-\frac{3}{2}\log \left|x+2+\sqrt{x^2+4x+1}\right|+C

Question 24

(i) \int \sqrt{x^2+3x}dx
Sol :
Given : I=\int \sqrt{x^2+3x}dx

=\int \sqrt{\left(x^2+2.x\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)}

=\int \sqrt{(x+\frac{3}{2})^2-\left(\frac{3}{2}\right)^2}

=\dfrac{\left(x+\frac{3}{2}\right)}{2}\sqrt{\left(x+\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2}-\frac{9}{4\times 2} \log \left|\left(x+\frac{3}{2}\right)+\sqrt{\left(x+\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2}\right|+C

I=\frac{2x+3}{4}\sqrt{x^2+3x}-\frac{9}{8}\log \left|x+\frac{3}{2}+\sqrt{x^2+3x}\right|+C


(ii) \int \sqrt{x^2-8x+7}dx
Sol :
Given : I=\int \sqrt{x^2-8x+7}dx

=\int \sqrt{x^2-2x.4+16-16+7}dx

=\int \sqrt{(x^2-2x.4+16)-9}dx

=\int \sqrt{(x-4)^2-(3)^2}dx

=\frac{(x-4)}{2}\sqrt{(x-4)^2-(3)^2}-\frac{9}{2}\log \left|x-4+\sqrt{(x-4)^2-(3)^2}\right|+C

I=\frac{x-4}{2}\sqrt{x^2-8x+7}-\frac{9}{2}\log \left|x-4+\sqrt{x^2-8x+7}\right|+C

Question 25

(i) \int \sqrt{1+x^2}dx
Sol :
Given : I=\int \sqrt{1+x^2}dx

=\int \sqrt{(1)^2+(x)^2}dx

=\frac{x}{2}\sqrt{x^2+1}+\frac{1}{2}\log \left|x+\sqrt{x^2+1}\right|+C

=\frac{x\sqrt{1+x^2}}{2}+\frac{1}{2}\log\left|x+\sqrt{1+x^2}\right|+C


(ii) \int \sqrt{1+\frac{x^2}{9}}dx
Sol :
Given : I=\int \sqrt{1+\frac{x^2}{9}}dx

=\int \sqrt{\frac{9+x^2}{9}}dx

=\int \frac{\sqrt{9+x^2}}{3}dx

=\frac{1}{3}\int \sqrt{x^2+9}dx

=\frac{1}{3} \int \sqrt{(x)^2+(3)^2}dx

=\frac{1}{3}\left[\frac{x}{2}\sqrt{x^2+9}+\frac{9}{2}\log \left|x+\sqrt{x^2+9}\right|\right]+C

I=\frac{x}{6}\sqrt{x^2+9}+\frac{3}{2}\log \left|x+\sqrt{x^2+9}\right|+C


Question 26

\int \sqrt{x^2+4x+6}dx
Sol :
Given : I=\int \sqrt{x^2+4x+6}dx

=\int \sqrt{x^2+2.x.2+4-4+6}dx

=\int \sqrt{(x^2+2.x.2+4)+2}dx

=\int \sqrt{(x+2)^2+(\sqrt{2})^2}dx

=\frac{(x+2)}{2}\sqrt{(x+2)^2+(\sqrt{2})^2}+\frac{2}{2}\log \left|x+2+\sqrt{(x+2)^2+(\sqrt{2})^2}\right|+C

I=\frac{x+2}{2}\sqrt{x^2+4x+6}+\log \left|x+2+\sqrt{x^2+4x+6}\right|+C


Question 27

\int \sqrt{x^2+2x+5}dx
Sol :
Given : I=\int \sqrt{x^2+2x+5}dx

=\int \sqrt{(x^2+2.x.1+1)-1+5}dx

=\int \sqrt{(x+1)^2+(2)^2}dx

=\frac{(x+1)}{2}\sqrt{(x+1)^2+(2)^2}+\frac{4}{2}\log \left|(x+1)+\sqrt{(x+1)^2+(2)^2}\right|+C

=\frac{x+1}{2}\sqrt{x^2+2x+5}+2\log \left|x+1+\sqrt{x^2+2x+5}\right|+C


Question 28

\int \frac{x+3}{x^2-2x+5}dx
Sol :
Given : I=\int \frac{x+3}{x^2-2x+5}dx

Let x+3=A.\frac{d}{dx}(x^2-2x-5)+B

x+3=A(2x-2)+B
2A.x-2A+B

Equating the coefficient of similar power of x
2A=1 and 3=-2A+B

A=\frac{1}{2} and B=3+2A=3+2\times \frac{1}{2}=3+1=4


Now , I=\int \frac{x+3}{x^2-2x-5}dx

\int \dfrac{\frac{1}{2}(2x-2)+4}{x^2-2x-5}dx

=\frac{1}{2}\int \frac{2x-2}{x^2-2x-5}dx+4\int \frac{1}{x^2-2x-5}dx

=\frac{1}{2}\int \frac{1}{z}dx+4\int \frac{1}{(x^2-2.x.1+1-1-5)}dx

=\frac{1}{z}\log |z|+4\int \frac{dx}{(x-1)^2-(\sqrt{6})^2}

=\frac{1}{2}\log \left|x^2-2x-5\right|+4\left[\frac{1}{2\sqrt{6}}\log \left|\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}}\right|\right]+C

I=\frac{1}{2}\log \left|x^2-2x-5\right|+\frac{2}{\sqrt{6}}\log \left|\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}}\right|+C


Question 29

\int \frac{5x-2}{1+2x+3x^2}dx
Sol :
Given : I=\int \frac{5x-2}{1+2x+3x^2}dx

Let 5x-2=A\frac{d}{dx}(3x2+2x+1)+B

5x-2=A(6x+2)+B=6Ax+2A+B

Equating the coefficient of similar power of x
6A=5 and 2A+B=-2

A=\frac{5}{6} and B=-2-2A=-2-2×\frac{5}{6}

A=\frac{5}{6} and B=\frac{-11}{3}


Now , I=\int \frac{5x-2}{3x^2+2x+1}dx

=\int \dfrac{\frac{5}{6}(6x+2)-\frac{11}{3}}{3x^2+2x+1}dx

=\frac{5}{6}\int \frac{6x+2}{3x^2+2x+1}dx-\frac{11}{3}\int \frac{dx}{3x^2+2x+1}

=\frac{5}{6}\int \frac{dz}{z}-\frac{11}{3} \int \frac{dx}{3\left(x^2+2.x.\frac{1}{3}+\frac{1}{3}\right)}

=\frac{5}{6}\log |z|-\frac{11}{3\times 3}\int \frac{dx}{\left(x^2+2.x.\frac{1}{3}+\frac{1}{9}-\frac{1}{9}+\frac{1}{3}\right)}

=\frac{5}{6}\log \left|3x^2+2x+1\right|-\frac{11}{9}\int \dfrac{dx}{\left(x+\frac{1}{3}\right)^2+\left(\frac{\sqrt{2}}{3}\right)}

=\frac{5}{6}\log \left|3x^2+2x+1\right|-\frac{11}{9}\times \dfrac{1}{\frac{\sqrt{12}}{3}}\tan^{-1}\dfrac{\left(x+\frac{1}{3}\right)}{\frac{\sqrt{2}}{3}}+C

=\frac{5}{6}\log \left|3x^2+2x+1\right|-\frac{11}{3\sqrt{2}}\tan^{-1} \dfrac{\left(3x+1\right)}{3\times \frac{\sqrt{2}}{3}}+C

I=\frac{5}{6} \log \left|3x^2+2x+1\right|-\frac{11}{3\sqrt{2}}\tan ^{-1}\frac{(3x+1)}{\sqrt{2}}+C


Question 30

\int \frac{x+2}{2x^2+6x+5}
Sol :
Given : I=\int \frac{x+2}{2x^2+6x+5}

Let x+2=A\frac{d}{dx}(2x2+6x+5)

x+2=A(4x+6)+B=4Ax+6A+B

Equating the coefficient of similar power of x
4A=1 and 6A+B=2

A=\frac{1}{4} and

B=2-6A=2-6\times \frac{1}{4}

=2-\frac{3}{2}=\frac{1}{2}


Now ,  I=\int \frac{x+2}{2x^2+6x+5}dx

=\int \dfrac{\frac{1}{4}(4x+6)+\frac{1}{1}}{2x^2+6x+5}dx

=\frac{1}{4}\int \frac{4x+6}{2x^2+6x+5}dx+\frac{1}{2}\int \frac{dx}{2x^2+6x+5}

=\frac{1}{4}\int \frac{dz}{z}+\frac{1}{2}\int \dfrac{dx}{2(x^2+3x+\frac{5}{2})}

=\frac{1}{4}\int \frac{dz}{z}+\frac{1}{2\times 2}\int \dfrac{dx}{\left(x^2+2x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+\frac{5}{2}\right)}

=\frac{1}{4}\log~z+\frac{1}{4}\int \dfrac{dx}{\left(x+\frac{3}{2}\right)^2+\frac{1}{4}}

=\frac{1}{4} \log~z+\frac{1}{4}\int \dfrac{dx}{\left(x+\frac{3}{8}\right)^2+\left(\frac{1}{2}\right)^2}

=\frac{1}{4}\log \left|2x^2+6x+5\right|+\frac{1}{4}\dfrac{1}{\frac{1}{2}}\tan^{-1} \dfrac{\left(x+\frac{3}{2}\right)}{\frac{1}{2}}+C

=\frac{1}{4}\log \left|2x^2+6x+5\right|+\frac{2}{4}\tan^{-1}\dfrac{2x+3}{2\times \frac{1}{2}}+C

I=\frac{1}{4}\log \left|2x^2+6x+5\right|+\frac{1}{2}\tan^{-1} (2x+3)+C


Question 31

\int \frac{3x+1}{2x^2-2x+3}dx
Sol :
Given: I=\int \frac{3x+1}{2x^2-2x+3}dx

Let 3x+1=A\frac{d}{dx}(2x2-2x+3)+B
3x+1=A(4x-2)+B=4Ax-2A+B

Equating the coefficient of similar power of x
4A=3 and

-2A+B=1
B=1+2A

A=\frac{3}{4} and B=1+2\times \frac{3}{4}=1+\frac{3}{2}=\frac{5}{2}

Now,
I=\int \frac{3x+1}{2x^2-2x+3}dx

=\int \frac{A(4x-2)+B}{2x^2-2x+3}dx

=\int \dfrac{\frac{3}{4}(4x-2)+\frac{5}{2}}{2x^2-2x+3}dx

=\frac{3}{4}\int \frac{4x-2}{2x^2-2x+3}+\frac{5}{2} \int \frac{dx}{2x^2-2x+3}

=\frac{3}{4}\int \frac{dz}{z}+\frac{5}{2}\frac{dx}{2(x^2-x+\frac{3}{2})}

=\frac{3}{4}\int \frac{1}{z}dz+\frac{5}{2\times 2}\int \frac{dx}{\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{3}{2}\right)}

=\frac{3}{4}\log \left|2x^2-2x+3\right|+\frac{5}{4}\int \dfrac{dx}{\left(x-\frac{1}{2}\right)^2+\frac{5}{4}}

=\frac{3}{4}\log \left|2x^2-2x+3\right|+\frac{5}{4}\int \dfrac{dx}{\left(x-\frac{1}{2}\right)^2+\left(\frac{\sqrt{5}}{2}\right)^2}

=\frac{3}{4}\log \left|2x^2-2x+3\right|+\frac{5}{4}\times \dfrac{1}{\frac{\sqrt{5}}{2}}\tan^{-1}\dfrac{\left(x-\frac{1}{2}\right)}{\frac{\sqrt{5}}{2}}+C

=\frac{3}{4}\log \left|2x^2-2x+3\right|+\frac{\sqrt{5}}{2}\tan^{-1}\left(\dfrac{2x-1}{2\times \frac{\sqrt{5}}{2}}\right)+C

I=\frac{3}{4}\log \left|2x^2-2x+3\right|+\frac{\sqrt{5}}{2}\tan^{-1}(2x-1)+C

Question 32

(i) \int \frac{x-1}{\sqrt{x^2-1}}dx
Sol :
Given : I=\int \frac{x-1}{\sqrt{x^2-1}}dx

Let x-1=A\frac{d}{dx}(x^2-1)+B
=A(2x)+B
=2Ax+B

Equating the coefficient of similar power of x
2A-1 and B=-1
A=\frac{1}{2}

Now , =\int \frac{x-1}{\sqrt{x^2-1}}dx

=\int \frac{A(2x)+B}{\sqrt{x^2-1}}dx

=\int \dfrac{\frac{1}{2}(2x)-1}{\sqrt{x^2-1}}dx

=\frac{1}{2} \int \frac{2x}{\sqrt{x^2-1}}-\int \frac{1}{\sqrt{x^2-1}}dx

=\frac{1}{2}\int \frac{dz}{\sqrt{z}}-\int \frac{1}{\sqrt{(x)^2-(1)^2}}

=\frac{1}{2}\int z^{-\frac{1}{2}}dz-\log \left|x+\sqrt{x^2-1}\right|+C

=\frac{1}{2}\dfrac{z^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}-\log\left|x+\sqrt{x^2-1}\right|+C

=\frac{1}{2}\dfrac{z^{\frac{1}{2}}}{\frac{1}{2}}-\log \left|x+\sqrt{x^2-1}\right|+C

=\sqrt{z}-\log\left|x+\sqrt{x^2-1}\right|+C

I=\sqrt{x^2-1}-\log \left|x+\sqrt{x^2-1}\right|+C


(ii) \int \frac{x+2}{\sqrt{x^2-1}}dx
Sol :
Given : I=\int \frac{x+2}{\sqrt{x^2-1}}dx

Let x+2=A\frac{d}{dx}(x2-1)+B=A(2x)+B
x+2=2A(x)+B
∴2A=1 and B=2

A=\frac{1}{2}


Now , I=\int \frac{x+2}{\sqrt{x^2-1}}dx

=\int \frac{A(2x)+B}{\sqrt{x^2-1}}dx

=\int \dfrac{\frac{1}{2}\times 2x+2}{\sqrt{x^2-1}}dx

=\frac{1}{2}\int \frac{2x}{\sqrt{x^2-1}}dx+\int \frac{2}{\sqrt{x^2-1}}dx

=\frac{1}{2}\int \frac{dz}{\sqrt{z}}+2\int \frac{dx}{\sqrt{(x)^2-(1)^2}}

=\frac{1}{2}\int z^{-\frac{1}{2}}dz+2\log \left|x+\sqrt{x^2-1}\right|+C

=\frac{1}{2}\int \frac{z^{-\frac{1}{2}}}{-\frac{1}{2}+1}+2\log \left|x+\sqrt{x^2-1}\right|+C

=\sqrt{z}+2\log \left|x+\sqrt{x^2-1}\right|+C

I=\sqrt{x^2-1}+2\log \left|x+\sqrt{x^2-1}\right|+C

Question 33

\int \frac{x+2}{\sqrt{4x-x^2}}dx
Sol :
Given : I=\int \frac{x+2}{\sqrt{4x-x^2}}dx

Let x+2A.\frac{d}{dx}(4x-x^2)+B=A(4-2x)+B

x+2=4A-2Ax+B

Equating the coefficient of similar power of x
we get -2A=1 and 4A+B=2

A=\frac{1}{2} B=2-4A=2-4\times \left(-\frac{1}{2}\right)

B=2+2=4


Now , I=\int \frac{x+2}{\sqrt{4x-x^2}}dx

=\int \frac{A(4-2x)+B}{\sqrt{4x-x^2}}dx

=\int \dfrac{-\frac{1}{2}(4-2x)+4}{\sqrt{4x-x^2}}dx

=-\frac{1}{2}\int \frac{(4-2x)dx}{\sqrt{4x-x^2}}+4\int \frac{dx}{\sqrt{4x-x^2}}

=-\frac{1}{2} \int \frac{dz}{\sqrt{z}}+4\int \frac{dx}{\sqrt{4-(x^2-4x+4)}}

=-\frac{1}{2}\dfrac{z^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}+4\int \frac{dx}{\sqrt{(2)^2-(x-2)^2}}

=-\frac{1}{2}\dfrac{z^{\frac{1}{2}}}{\frac{1}{2}}+4\sin^{-1}\frac{(x-2)}{2}+C

-\sqrt{z}+4\sin^{-1}\frac{(x-2)}{2}+C

I=-\sqrt{4x-x^2}+4\sin^{-1}(x-2)+C


Question 34

\int \frac{x+1}{\sqrt{2x-x^2}}dx
Sol :
Given : I=\int \frac{x+1}{\sqrt{2x-x^2}}dx

Let x+1=A\frac{d}{dx}(2x-x^2)+B=A(2-2x)+B

x+1=2A-2Ax+B

Equating the coefficient of similar power of x
We get 1=-2A and B+2A=1

A=-\frac{1}{2} B=1-2A=1-2\times \left(-\frac{1}{2}\right)=2


Now , I=\int \frac{x+1}{\sqrt{2x-x^2}}dx

=\int \frac{A(2-2x)+B}{\sqrt{2x-x^2}}dx

=\int \frac{A(2-2x)dx}{\sqrt{2x-x^2}}dx+\int \frac{B}{\sqrt{2x-x^2}}dx

=A\int \frac{(2-2x)dx}{\sqrt{2x-x^2}}+B\int \frac{dx}{\sqrt{2x-x^2}}

=-\frac{1}{2}\int \frac{dz}{\sqrt{z}}+2\int \frac{dx}{\sqrt{2x-x^2-1+1}}

=-\frac{1}{2}\int z^{-\frac{1}{2}dz}+2\int \frac{dx}{\sqrt{1-(x^2-2x+1)}}

=-1.\dfrac{z^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}+2\int \frac{dx}{\sqrt{(1)^2-(x-1)^2}}

=-\frac{1}{2}\times \dfrac{z^{\frac{1}{2}}}{\frac{1}{2}}+2\sin^{-1}\frac{(x-1)}{1}+C

=-√z+2sin-1(x-1)+C
=-√2x-x2+2sin-1(x-1)+C


Question 35

\int \frac{2x+1}{\sqrt{7+6x-3x^2}}
Sol :
Given : I=\int \frac{2x+1}{\sqrt{7+6x-3x^2}}

Let 2x+1=A\frac{d}{dx}(7+6x-3x^2)+B =A(6-6x)+B

2x+1=6A-6Ax+B

Equating the coefficient of similar power of x
We get -6A=2 and 6A+B=1

A=-\frac{2}{3}=-\frac{1}{3}

B=1-6A=1-6\times \left(-\frac{1}{3}\right)
=1+2=3


Now , I=\int \frac{2x+1}{\sqrt{7+6x-3x^2}}

=\int \frac{A(6-6x)+B}{\sqrt{7+6x-3x^2}}

=\int \frac{A(6-6x)}{\sqrt{7+6x-3x^2}}dx+\int \frac{B}{\sqrt{7+6x-3x^2}}dx

=A\int \frac{(6-6x)dx}{\sqrt{7+6x-3x^2}}+B\int \frac{dx}{\sqrt{7+6x-3x^2}}

=-\frac{1}{3}\int \frac{dz}{\sqrt{z}}+3\int \frac{dx}{\sqrt{7+3-3+6x-3x^2}}

=-\frac{1}{3}2\sqrt{z}+3\int \frac{10}{\sqrt{10-(3x^2-6x+3)}}

=-\frac{2}{3}\sqrt{z}+3\int \frac{dx}{\sqrt{(\sqrt{10})^2-(\sqrt{3}x-\sqrt{3})^2}}

=-\frac{2}{3}\sqrt{7+6x-3x^2}+3\frac{\sin^{-1}(\sqrt{3}x-\sqrt{3})}{\sqrt{3}\times \sqrt{10}}+C

I=-\frac{2}{3}\sqrt{7+6x-3x^2}+\sqrt{3}\frac{\sin^{-1}\sqrt{3}(x-1)}{\sqrt{10}}+C


Question 36

\int \frac{4x+1}{\sqrt{2x^2+x-3}}dx
Sol :
Given : I=\int \frac{4x+1}{\sqrt{2x^2+x-3}}dx

Let z=2x2+x-3 then dz=(4x+1)dx

Now , I=\int \frac{4x+1}{\sqrt{2x^2+x-3}}dx=\int \frac{dz}{\sqrt{z}}

=\int z^{-\frac{1}{2}}dz

=\dfrac{z^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}+C

=2\sqrt{z}+C

=2\sqrt{2x^2+x-3}+C


Question 37

\int \frac{5x+3}{\sqrt{x^2+4x+10}}dx
Sol :
Given : I=\int \frac{5x+3}{\sqrt{x^2+4x+10}}dx

Let 5x+3=A\frac{d}{dx}(x^2+4x+10) =A(2x+4)+B

5x+3=2Ax+4A+B

Equating the coefficient of similar power of x

We get 2A=5 and 4A+B=3

A=\frac{5}{2} and

B=3-4A=3-4\times \frac{5}{2}
B=3-10=-7


Now , I=\int \frac{5x+3}{\sqrt{x^2+4x+10}}dx

=\int \frac{A(2x+4)+B}{\sqrt{x^2+4x+10}}

=A\int \frac{(2x+4)}{\sqrt{x^2+4x+10}}dx+B\int \frac{dx}{\sqrt{x^2+4x+10}}

I=\frac{5}{2}\int \frac{(2x+4)}{\sqrt{x^2+4x+10}}dx-7\int \frac{dx}{\sqrt{x^2+4x+4+6}}

=\frac{5}{2}\int \frac{dz}{\sqrt{z}}-7\int \frac{dx}{\sqrt{x^2+2.x.2+4+6}}

I=\frac{5}{2}.2\sqrt{z}-7\int \frac{dx}{\sqrt{(x+2)^2+(\sqrt{6})^2}}

=5\sqrt{z}-7\log \left|x+2+\sqrt{(x+2)^2+(\sqrt{6})^2}\right|+C

I=5\sqrt{x^2+4x+10}-7\log \left|(x+2)+\sqrt{x^2+4x+10}\right|+C


Question 38

\int \frac{x+3}{\sqrt{5-4x-x^2}}
Sol :
Given : I=\int \frac{x+3}{\sqrt{5-4x-x^2}}

Let x+3=A\frac{d}{dx}(5-4x-x^2)+B=A(-4-2x)+B

x+3=-4A-2Ax+B=-2Ax+B-4A

Equating the coefficient of similar power of x
We get -2A=1 and B-4A=3

A=-\frac{1}{2}

B=3+4A=3+4\times -\frac{1}{2}
=3-2=1


Now , I=\int \frac{x+3}{\sqrt{5-4x-x^2}}

=\int \frac{A(-4-2x)+B}{\sqrt{5-4x-x^2}}dx

=\int \frac{A(-4-2x)}{\sqrt{5-4x-x^2}}dx+\int \frac{B}{\sqrt{5-4x-x^2}}dx

=A\int \frac{(-4-2x)}{\sqrt{5-4x-x^2}}dx+B\int \frac{dx}{\sqrt{5-4x-x^2}}

I=-\frac{1}{2}\int \frac{dz}{\sqrt{z}}+1\int \frac{dx}{\sqrt{5+4-4-4x-x^2}}

=-\frac{1}{2}\times 2\sqrt{z}+\int \frac{dx}{\sqrt{9-(x^2+4x+4)}}

=-\sqrt{z}+\int \frac{dx}{\sqrt{(3)^2-(x+2)^2}}

=-\sqrt{5-4x-x^2}+\sin^{-1}\frac{(x+2)}{3}+C


Question 39

\int \frac{x+2}{\sqrt{x^2-2x+3}}dx
Sol :
Given : I=\int \frac{x+2}{\sqrt{x^2-2x+3}}dx

Let x+2=A\frac{d}{dx}(x^2-2x+3)+B=A(2x-2)+B

x+2=2Ax-2A+B

Equating the coefficient of similar power of x
We get 1=2A and B-2A=2
A=\frac{1}{2}

B=2+2A=2+2\times \frac{1}{2}=3


Now , I=\int \frac{x+2}{\sqrt{x^2-2x+3}}dx

=\int \frac{A(2x-2)+B}{\sqrt{x^2-2x+3}}

=\int \frac{A(2x-2)}{\sqrt{x^2-2x+3}}dx+\int \frac{B}{\sqrt{x^2-2x+3}}dx

=\int \frac{A(2x-2)}{\sqrt{x^2-2x+3}}dx+\int \frac{B}{\sqrt{x^2-2x+3}}dx

=A\int \frac{(2x-2)}{\sqrt{x^2-2x+3}}dx+B\int \frac{dx}{\sqrt{x^2-2x+3}}

=\frac{1}{2}\int \frac{dz}{\sqrt{z}}+3\int \frac{dx}{\sqrt{x^2-2x+1+2}}

I=\frac{1}{2}\times 2\sqrt{z}+3\int \frac{dx}{\sqrt{(x-1)^2+(\sqrt{2})^2}}

=\sqrt{z}+3\log \left|x-1+\sqrt{(x-1)^2+(\sqrt{2})^2}\right|+C

I=\sqrt{x^2-2x+3}+3\log \left|x-1+\sqrt{x^2-2x+3}\right|+C


Question 40

\int \frac{6x+7}{(x-5)(x-4)}dx
Sol :
Given : I=\int \frac{6x+7}{(x-5)(x-4)}dx

= \int \frac{6x+7}{\sqrt{(x^2-4x-5x+20)}}

=\int \frac{6x+7}{\sqrt{x^2-9x+20}}dx

Let 6x+7=A\frac{d}{dx}(x^2-9x+20)+B=A(2x-9)+B

6x+7=2Ax-9A+B

Equating the coefficient of similar power of x
We get , 2A=6 and B-9A=7
A=3  B=9A+7=27+7=34


Now , I=\int \frac{6x+7}{\sqrt{x^2-9x+20}}

=\int \frac{A(2x-9)+B}{\sqrt{x^2-9x+20}}dx

=A\int \frac{dz}{\sqrt{z}}+B\int \frac{dx}{\sqrt{\left(x^2-2.x.\frac{9}{2}+\frac{81}{4}\right)-\frac{81}{4}+20}}

I=3\times 2\sqrt{2}+34\int \frac{dx}{\sqrt{\left(x-\frac{9}{2}\right)^2-\frac{1}{4}}}

=6\sqrt{z}+34\int \frac{dx}{\sqrt{\left(x-\frac{9}{8}\right)^2-\left(\frac{1}{2}\right)^2}}

=6\sqrt{x^2-9x+20}+34\log \left|\left(x-\frac{9}{8}\right)+\sqrt{\left(x-\frac{9}{8}\right)^2-\left(\frac{1}{2}\right)^2}\right|+C

=6\sqrt{x^2-9x+20}+34\log \left|x-\frac{9}{8}+\sqrt{x^2-9x+20}\right|+C

Question 41

(i) \int (x+2)\sqrt{x^2+1}dx
Sol :
Given : I=\int (x+2)\sqrt{x^2+1}dx

=\int x\sqrt{x^2+1}dx+2\int \sqrt{x^2+1}dx

=\frac{1}{2}\int 2x\sqrt{x^2+1}dx+2\int \sqrt{(x)^2+(1)^2}dx

=\frac{1}{2}\int \sqrt{z}dz+2\left[\frac{x}{2}\sqrt{x^2+1}+\frac{1}{2}\log \left|x+\sqrt{x^2+1}\right|\right]+C

=\frac{1}{2}\times \frac{2}{3}z^{\frac{3}{2}}+x\sqrt{x^2+1}+\log \left|x+\sqrt{x^2+1}\right|+C


(ii) \int (x+1) \sqrt{2x^2+3}dx
Sol :
Given : I=\int (x+1) \sqrt{2x^2+3}dx

=\int x.\sqrt{2x^2+3}dx+\int \sqrt{2x^2+3}dx

=\frac{1}{4}\int 4x\sqrt{2x^2+3}dx+\int \sqrt{2\left(x^2+\frac{3}{2}\right)}dx

Let z=2x2+3 then dz=4xdx

Now , I=\frac{1}{4}\int 4x\sqrt{2x^2+3}dx+\sqrt{2}\int \sqrt{x^2+\frac{3}{2}}dx

=\frac{1}{4}\int \sqrt{2x^2+3}4xdx+\sqrt{2} \int \sqrt{(x)^2+\left(\sqrt{\frac{3}{2}}\right)^2}dx

=\frac{1}{4}\int \sqrt{z}dz+\sqrt{2}\left[\frac{x}{2}\sqrt{(x)^2+\left(\frac{\sqrt{3}}{\sqrt{2}}\right)^2}+\frac{3}{2\times 2}\log \left|x+\sqrt{x^2+\frac{3}{2}}\right|\right]+C

=\frac{1}{4}\times \frac{2}{3}z^{\frac{3}{2}} +\sqrt{2}\left[\frac{x}{2}\sqrt{x^2+\frac{\sqrt{3}}{\sqrt{2}}}+\frac{3}{4}\log \left|x+\sqrt{x^2+\frac{3}{2}}\right|\right]+C

=\frac{1}{6}(2x^2+3)^{3/2}+\sqrt{2}\left[\frac{x}{2}\sqrt{\frac{2x^2+3}{2}}+\frac{3}{4}\log \left|x+\sqrt{x^2+\frac{3}{2}}\right|\right]

=\frac{1}{6}(2x^2+3)^{3/2}+\sqrt{2}\left[\frac{x}{2}\sqrt{\frac{2x^2+3}{\sqrt{2}}}+\frac{3}{4}\log \left|x+\sqrt{x^2+\frac{3}{2}}\right|\right]

=\frac{1}{6}(2x^2+3)^{3/2}+\frac{x}{2}\sqrt{2x^2+3}+\frac{3\sqrt{2}}{4}\log\left|x+\sqrt{x^2+\frac{3}{2}}\right| +C


Question 42

\int x.\sqrt{x+x^2}dx
Sol :
Given : I=\int x.\sqrt{x+x^2}dx

=\frac{1}{2}\int 2x.\sqrt{x+x^2}dx

=\frac{1}{2}\int (2x+1-1)\sqrt{x+x^2}dx

=\frac{1}{2}\int (2x+1)\sqrt{x+x^2}dx-\frac{1}{2}\int \sqrt{x^2+x}dx

=\frac{1}{2}\int \sqrt{x^2+x}(2x+1)dx-\frac{1}{2}\int \sqrt{x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}}

=\frac{1}{2}\int \sqrt{z}dz-\frac{1}{2}\int \sqrt{\left(x+\frac{1}{2}\right)^2-\left(\frac{1}{2}]\right)^2}dx

=\frac{1}{2}\times \frac{2}{3}z^{\frac{3}{2}}-\frac{1}{2}\left[\dfrac{\left(x+\frac{1}{2}\right)}{2}\sqrt{\left(x+\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2}-\frac{1}{4\times 2}\log \left|x+\frac{1}{2}+\sqrt{\left(x+\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2}\right|\right]+C

=\frac{1}{3}z^{\frac{3}{2}}-\frac{1}{2}\left[\frac{2x+1}{2\times 2}\sqrt{x^2+x}-\frac{1}{8}\log \left|x+\frac{1}{2}+\sqrt{x^2+x}\right|\right]+C

=\frac{1}{3}z^{3/8}-\frac{(2x+1)}{8}\sqrt{x^2+x}+\frac{1}{16}\log \left|x+\frac{1}{2}+\sqrt{x^2+x}\right|+C

I=\frac{1}{3}(x^2+x)^{3/2}-\frac{1}{8}(2x+1)\sqrt{x^2+x}+\frac{1}{16}\log \left|x+\frac{1}{2}+\sqrt{x^2+x}\right|+C

Question 43

(i) \int (x+3)\sqrt{3-4x-x^2}dx
Sol :
Given : I=\int (x+3)\sqrt{3-4x-x^2}dx

=\frac{1}{2}\int 2(x+3)\sqrt{3-4x-x^2}dx

=\frac{1}{2}\int (2x+6)\sqrt{3-4x-x^2}dx

=\frac{1}{2} \int (2x+4+2)\sqrt{3-4x-x^2}dx

=\frac{1}{2} \int (2x+4) \sqrt{3-4x-x^2}dx+\frac{1}{2}\int 2\sqrt{3-4x-x^2}dx

Let z=3-4x-x2 then dz=-4-2x=-(2x+4)dx

∴-dz=(2x+4)dx

Now I=\frac{1}{2}\int \sqrt{z}(-dz)+\int \sqrt{3-(x^2+4x)}dx

=-\frac{1}{2}\times \frac{2}{3}z^{3/2}+\int \sqrt{3-(x^2+4x+4-4)}dx

=-\frac{1}{3}z^{3/2}+\int \sqrt{3-(x^2+4x+4)+4}dx

=-\frac{1}{3}z^{3/2}+\int \sqrt{7-(x^2+4x+4)}dx

=-\frac{1}{3}z^{3/2}+\int \sqrt{(\sqrt{7})^2-(x^2)^2}dx

-\frac{1}{3}(3-4x-x^2)^{3/2}+\frac{(x+2)}{2}\sqrt{(\sqrt{7})^2-(x+2)^2}+\frac{(\sqrt{7})^2}{2}\sin ^{-1}\frac{(x+2)}{7}+C

I=-\frac{1}{3}(3-4x-x^2)^{3/2}+\frac{(x+2)}{2}\sqrt{3-4x-x^2}+\frac{7}{2}\sin^{-1}\frac{(x+2)}{\sqrt{7}}+C


(ii) \int x\sqrt{1+x-x^2}
Sol :
Given : I=\int x\sqrt{1+x-x^2}dx

=\frac{1}{2}\int 2x\sqrt{1+x-x^2}dx

=\frac{1}{2}\int (2x-1+1)\sqrt{1+x-x^2}dx

=\frac{1}{2}\int (2x-1)\sqrt{1+x-x^2}dx+\frac{1}{2}\int \sqrt{1+x-x^2}dx

Let z=1+x-x2 then dz=(1-2x)dx=-(2x-1)dx
-dz=(2x-1)dx

Now =\frac{1}{2}\int \sqrt{1+x-x^2}(2x-1)dx+\frac{1}{2}\int \sqrt{1+x-x^2}dx

=\frac{1}{2}\int \sqrt{z}(-dz)+\frac{1}{2}\int \sqrt{1-(x^2-x)}dx

=-\frac{1}{2}\int \sqrt{z}dz+\frac{1}{2}\int \sqrt{1-4\frac{(x^2-x)}{4}}dx

=-\frac{1}{2}\times \frac{2}{3}z^{3/2}+\frac{1}{2}\int \sqrt{\frac{4-(4x^2-4x+1-1)}{4}}dx

=-\frac{1}{3}z^{3/2}+\frac{1}{2}\int \frac{\sqrt{4-(4x^2-4x+1)+1}}{2}dx

=-\frac{1}{3}z^{3/2}+\frac{1}{4}\int \sqrt{5-(4x^2-4x+1)}dx

=-\frac{1}{3}z^{3/2}+\frac{1}{4}\int \sqrt{(\sqrt{5})^2-(2x-1)^2}dx

=-\frac{1}{3}z^{3/2}+\frac{1}{4}\left[\frac{(2x-1)}{2}\sqrt{(\sqrt{5})^2-(2x-1)^2}+\frac{5}{2\times 2}\sin^{-1}\frac{2x-1}{\sqrt{5}}\right]

=-\frac{1}{3}(1+x-x^2)^{3/2}+\frac{(2x-1)}{8}\sqrt{1+x-x^2}+\frac{5}{16}\sin^{-1}\frac{(2x-1)}{\sqrt{5}}+C

Question 44

\int \frac{3x^2}{1+x^6}dx
Sol :
Given : I=\int \frac{3x^2}{1+x^6}dx

=\int \frac{3x^2}{1+(x^3)^2}dx

Let x3=z then 3x2dx=dz

Now , I=\int \frac{3x^2}{1+(x^3)^2}dx

=\int \frac{dz}{1+z^3}

I=tan-1(z)+C
=tan-1(x3)+C

Question 45

\int \frac{x^2}{1-x^6}dx
Sol :
Given : I=\int \frac{x^2}{1-x^6}dx

=\int \frac{x^2}{1-(x^3)^2}dx

Let x3=z then 3x2dx=dz⇒x2dx=\frac{dz}{3}

Now , I=\int \frac{dz}{3(1-z^2)}

=\frac{1}{3}\int \frac{1}{1-z^2}dz

=\frac{1}{3}\times \frac{1}{2\times 1}\log \left|\frac{1+z}{1-z}\right|+C

\left[\therefore \int \frac{dx}{a^2-x^2}=\frac{1}{2a} \log \left|\frac{a+x}{a-x}\right|\right]+C

=\frac{1}{6}\log \left|\frac{1+x^3}{1-x^3}\right|+C


Question 46

\int \frac{3x}{1+2x^4}dx
Sol :
Given : I=\int \frac{3x}{1+2x^4}dx

=3\int \frac{xdx}{1+(\sqrt{2}x^2)^2}

Let z=\sqrt{2}x^2 then dz=\sqrt{2}2xdx\frac{dz}{2\sqrt{2}=xdx}


Now , I=3\int \frac{xdx}{1+(\sqrt{2}x^2)^2}

=3\int \frac{dz}{(1+z^2)2\sqrt{2}}

=\frac{1\times 3}{2\sqrt{2}}\int \frac{1}{1+z^2}dz

=\frac{3}{2\sqrt{2}}\times \frac{1}{1}\tan^{-1}\frac{z}{1}+C

I=\frac{3}{2\sqrt{2}}\tan^{-1}(\sqrt{2}x^2)+C

Question 47

\int \frac{x^2}{1-9x^6}dx
Sol :
Given : I=\int \frac{x^2}{1-9x^6}dx

=\int \frac{x^3}{1-(3x^3)^2}dx

Let z=3x^3 then dz=3.3x^2dx=9x^2dx\frac{dz}{9}=x^2dx


Now I=\int \frac{x^2}{1-(3x^3)}dx

=\int \frac{dz}{9(1-z^2)}

=\frac{1}{9}\int \frac{dz}{1-z^2}

\left[\therefore \int \frac{1}{2a}\log \left|\frac{a+x}{a-x}|\right]

=\frac{1}{9}\times \frac{1}{2\times 1} \log \left|\frac{1+z}{1-z}\right|+C

I=\frac{1}{18}\log \left|\frac{1+3x^3}{1-3x^3}\right|+C

Question 48

\int \frac{x^2}{\sqrt{x^6+a^6}}dx
Sol :
Given :I=\int \frac{x^2}{\sqrt{x^6+a^6}}dx

=\int \frac{x^2}{\sqrt{(x^3)^2+(a^3)^2}}dx

Let z=x^3 then dz=3x^2dx\frac{dz}{3}=x^2dx

Now I=\int \frac{x^2dx}{\sqrt{(x^3)^2+(a^3)^2}}

=\int \frac{dz}{3(\sqrt{z^2+(a^3)^2})}

=\frac{1}{3}\int \frac{dz}{\sqrt{z^2+(a^3)^2}}

=\frac{1}{3}\log \left|z+\sqrt{z^2+(a^3)^2}\right|+C \left[\therefore \int \frac{dx}{\sqrt{x^2+a^2}=\log \left|x+\sqrt{x^2+a^2}\right|}\right]

I=\frac{1}{3}\log \left|x^3+\sqrt{x^6+a^6}\right|+C


Question 49

\int \frac{x}{x^2+x+1}dx
Sol :
Given : I=\int \frac{x}{x^2+x+1}dx

=\frac{1}{2}\int \frac{2x}{x^2+x+1}dx

=\frac{1}{2}\int \frac{(2x+1-1)}{x^2+x+1}dx

=\frac{1}{2}\int \frac{(2x+1)dx}{x^2+x+1}dx-\frac{1}{2}\int \frac{dx}{x^2+x+1}

=\frac{1}{2}\int \frac{dz}{z}-\frac{1}{2}\int \frac{dx}{(1+\left(x^2+2.x.\frac{1}{2}+\frac{1}{4})-\frac{1}{4}\right)}

=\frac{1}{2}\log |z|-\frac{1}{2}\int \dfrac{dx}{\frac{3}{2}+\left(x+\frac{1}{2}\right)^2}

=\frac{1}{2}\log |x^2+x+1|-\frac{1}{2}\times \dfrac{1}{\frac{\sqrt{3}}{2}}\tan^{-1}\dfrac{\left(x+\frac{1}{2}\right)}{\frac{\sqrt{3}}{2}}+C

=-\frac{1}{\sqrt{3}}\tan^{-1}\dfrac{2x+1}{2\times \frac{\sqrt{3}}{2}}+C+\frac{1}{2}\log |x^2+x+1|+C

=-\frac{1}{\sqrt{3}} \tan^{-1}\frac{(2x+1)}{\sqrt{3}}+\frac{1}{2}\log |x^2+x+1|+C

=\frac{1}{2}\log |x^2+x+1|-\frac{1}{\sqrt{3}}\tan^{-1} \frac{(2x+1)}{\sqrt{3}}+C

Question 50

\int \frac{dx}{x(x^3+8)}
Sol :
Given : I=\int \frac{dx}{x(x^3+8)}

Let z=x^3 then dz=3x^2dx\frac{dx}{3x^2}=dx
x=z^{\frac{1}{3}} and ∴dz=\frac{dz}{3.z^{2/3}}
x=z^{\frac{2}{3}}

Now , I=\frac{dx}{x(x^3+8)}

=\int \frac{dz}{3.z^{2/3}.z^{1/3}(z+8)}

=\frac{1}{3}\int \frac{dz}{z(z+8)}

=\frac{1}{3}\int \frac{dz}{z^2+8z}

=\frac{1}{3}\int \frac{dz}{z^2+2.z.4+16-16}

\left[\therefore \int \frac{dx}{x^2-a^2}=\frac{1}{2a}\log \left|\frac{x-a}{x+a}\right|\right]

=\frac{1}{3}\int \frac{dz}{(z+4)^2-(4)^2}

=\frac{1}{3}\times \frac{1}{2\times 4}\log \left|\frac{z+4-4}{z+4+4}\right|+C

=\frac{1}{24}\log \left|\frac{z}{z+8}\right|+C

=\frac{1}{24}\log \left|\frac{x^3}{x^3+8}\right|+C

Question 51

\int \frac{x+2}{\sqrt{x^2+5x+6}}dx
Sol :
I=\int \frac{x+2}{\sqrt{x^2+5x+6}}dx

Let x+2=A\frac{d}{dx}(x^2+5x+6)+B=A(2x+5)+B

x+2=2Ax+5A+B

Equating the coefficient of similar power of x
We get 2A=1 and B+5A=2

A=\frac{1}{2} B=2-5A=2-5\times \frac{1}{2} =2-\frac{5}{2}=\frac{4-5}{2}=\frac{-1}{2}

Now , I=\int \frac{x+2}{\sqrt{x^2+5x+6}}dx

=\int \frac{A(2x+5)+B}{\sqrt{x^2+5x+6}}dx

=A\int \frac{(2x+5)}{\sqrt{x^2+5x+6}}dx+B\int \frac{1}{\sqrt{x^2+5x+6}}

=\frac{1}{2}\int \frac{dz}{\sqrt{z}}-\frac{1}{2}\int \frac{1}{\sqrt{\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}\right)-\frac{25}{4}+6}}

=\frac{1}{2}\times 2\sqrt{z}-\frac{1}{2}\int \dfrac{dx}{\sqrt{\left(x+\frac{5}{2}\right)^2-\frac{1}{4}}}

=\sqrt{z}-\frac{1}{2}\int \dfrac{dx}{\sqrt{\left(x+\frac{5}{2}\right)^2-\left(\frac{1}{2}\right)^2}}

=\sqrt{x^2+5x+6}-\frac{1}{2}\log \left|\left(x+\frac{5}{2}\right)+\sqrt{\left(x+\frac{5}{2}\right)^2-\left(\frac{1}{2}\right)^2}\right|+C

\left[\therefore \int \frac{dx}{\sqrt{x^2-a^2}}=\log \left|x+\sqrt{x^2-a^2}\right|+C\right]

I=\sqrt{x^2+5x+6}-\frac{1}{2}\log \left|\left(x+\frac{5}{2}\right)+\sqrt{x^2+5x+6}\right|+C

No comments:

Post a Comment

Contact Form

Name

Email *

Message *