Exercise 19.12
Question 1
(i) \int \frac{dx}{\sqrt{1+4x^2}}Sol :
Given: I=\int \frac{dx}{\sqrt{1+4x^2}}=\int \frac{dx}{\sqrt{(1)^2+(2x)^2}}
=\frac{dx}{\sqrt{1+(2x)^2}}
\left[\int \frac{dx}{\sqrt{a^2+x^2}}=\log |x+\sqrt{x^2+a^2}|\right]
I=\frac{1}{2}\log (2x+\sqrt{1+4x^2})
I=\frac{1}{2}\log(2x+\sqrt{2x+\sqrt{1+4x^2}})+C
(ii) \int \frac{dx}{\sqrt{9+25x^2}}
Sol :
Given: I=\int \frac{dx}{\sqrt{9-25x^2}}=\int \frac{dx}{\sqrt{(3)^2-(6x)^2}}
\left[\therefore \int \frac{dx}{\sqrt{a^2-x^2}=\sin ^{-1}\frac{x}{a}}\right]
I=\frac{1}{5}\sin^{-1} \frac{5x}{3}+C
Question 2
(i) \int \frac{dx}{\sqrt{x^2+3x+4}}Sol :
Given: I=\int \frac{dx}{\sqrt{x^2+3x+4}}
=\int \dfrac{dx}{\sqrt{x^2+2x\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+4}}
=\int \dfrac{dx}{\sqrt{x^2+2x\frac{3}{2}+\frac{9}{4}+\frac{7}{4}}}
=\int \dfrac{dx}{\sqrt{\left(x+\frac{3}{2}\right)^2+\left(\frac{\sqrt{7}}{2}\right)^2}}
\left[\int \frac{dx}{\sqrt{a^2+x^2}}=\log |x+\sqrt{x^2+a^2}|\right]
I=\log \left[x+\frac{3}{2}+\sqrt{\left(x+\frac{3}{2}\right)^2+\left(\frac{\sqrt{7}}{2}\right)^2}\right]
I=\log \left[x+\frac{3}{2}+\sqrt{x^2+3x+4}\right]+C
(ii) \int \frac{dx}{\sqrt{2ax-x^2}}
Sol :
Given :
I=\int \frac{dx}{\sqrt{2ax-x^2}}=\int \frac{dx}{\sqrt{2ax-x^2-a^2+a^2}}
I=\int \frac{dx}{\sqrt{a^2-(x^2+a^2-2ax)}}
=\int \frac{dx}{\sqrt{a^2-(x-a)^2}}
\left[\int \frac{dx}{a^2-x^2}=\sin ^{-1}\frac{x}{a}\right]
I=\sin ^{-1}\frac{(x-a)}{a}+C
Question 3
\int \sqrt{3x^2+4x+1}dxSol :
Given :
I=\int \sqrt{3x^2+4x+1}dx
=\int \sqrt{3x^2+\frac{3}{3}\times 4x+\frac{3}{3}}dx
I=\int \sqrt{3\left(x^2+\frac{4x}{3}+\frac{1}{3}\right)}
I=\sqrt{3}\int \sqrt{x^2+\frac{4x}{3}+\frac{1}{3}} dx
I=\sqrt{3}\int \sqrt{x^2+2.x.\frac{2}{3}+\frac{4}{3}-\frac{4}{3}+\frac{1}{3}}dx
I=\sqrt{3}\int \sqrt{\left(x+\frac{2}{3}\right)^2-\left(\frac{1}{3}\right)^2}dx
\left[7\int \sqrt{x^2-a^2}dx=\frac{x}{2}\sqrt{x^2-a^2}-\frac{a^2}{2}\log |x+\sqrt{x^2-a^2}|\right]
I=\sqrt{3}\left[\dfrac{\left(x+\frac{2}{3}\right)}{2}\sqrt{\left(x+\frac{2}{3}\right)^2-\left(\frac{1}{3}\right)^2}-\frac{1}{9\times 2}\log \left(x+\frac{2}{3}\right)+\sqrt{\left(x+\frac{2}{3}\right)^2-\left(\frac{1}{3}\right)^2})\right]
I=\sqrt{3}\left[\frac{3x+2}{6}\sqrt{\left(x+\frac{2}{3}\right)^2-\left(\frac{1}{3}\right)^2}-\frac{1}{18}\log \left(x+\frac{2}{3}+\sqrt{\left(x+\frac{2}{3}\right)^2-\left(\frac{1}{3}\right)^2}\right)\right]
I=\sqrt{3}\left[\frac{3x+2}{6}\sqrt{\frac{3x^2+4x+1}{3}}-\frac{1}{18}\log \left(x+\frac{2}{3}\sqrt{\frac{3x^2+4x+1}{3}}\right)\right]+C
I=\sqrt{3}\left[\frac{3x+2}{6}\frac{\sqrt{3x^2+4x+1}}{\sqrt{3}}-\frac{1}{18}\log \left(x+\frac{2}{3}+\sqrt{\frac{3x^2+4x+1}{3}}\right)\right]+C
I=\frac{3x+2}{6}\sqrt{3x^2+4x+1}-\frac{\sqrt{3}}{18}\log \left(x+\frac{2}{3}+\sqrt{\frac{3x^2+4x+1}{3}}\right)+C
Question 4
\int \sqrt{x^2-3x+2} dxSol :
Given: I=\int \sqrt{x^2-3x+2} dx
I=\int \sqrt{x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+2}dx
I=\int \sqrt{\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}\right)-\frac{1}{4}} dx
I=\int \sqrt{\left(x-\frac{3}{2}\right)^2-\left(\frac{1}{2}\right)^2}dx
I=\dfrac{\left(x-\frac{3}{2}\right)}{2}\sqrt{\left(x-\frac{3}{2}\right)^2-\left(\frac{1}{8}\right)^2}-\dfrac{\left(\frac{1}{2}\right)^2}{2}\log \left(x-\frac{3}{2}+\sqrt{\left(x-\frac{3}{2}\right)^2-\left(\frac{1}{2}\right)^2}\right)+C
I=\frac{2x.3}{2\times 2}\sqrt{x^2-3x+2}-\frac{1}{8}\log \left(x-\frac{3}{2}+\sqrt{x^2-3x+2}\right)+C
I=\frac{2x.3}{4}\sqrt{x^4-3x+2}-\frac{1}{8}\log \left|\left(x-\frac{3}{2}+\sqrt{x^2-3x+2}\right)\right|+C
Question 5
\int \frac{dx}{\sqrt{10-8x-2x^2}}Sol :
Given :
I=\int \frac{dx}{10-8x-2x^2}
=\int \frac{dx}{\sqrt{2(5-4x-x^2)}}
=\frac{1}{\sqrt{2}}\int \frac{dx}{\sqrt{5-4x-x^2}}
=\frac{1}{\sqrt{2}}\int \frac{dx}{\sqrt{5-4x-x^2-4+4}}
=\frac{1}{\sqrt{2}}\int \frac{dx}{\sqrt{9-(x^2+4x+4)}}
=\frac{1}{\sqrt{2}}\int \frac{dx}{3^2-(x+2)^2}
\left[\because \int \frac{dx}{\sqrt{a^2-x^2}}=\sin ^{-1}\frac{x}{a}\right]
I=\frac{1}{\sqrt{2}} \sin ^{-1}\left(\frac{x+2}{3}\right)+C
Question 6
\int \frac{dx}{\sqrt{4-2x-2x^2}}Sol :
Given: I=\int \frac{dx}{\sqrt{4-2x-2x^2}}=\int \frac{dx}{\sqrt{2(2-x-x^2)}}
=\frac{1}{\sqrt{2}\int \frac{dx}{\sqrt{2-x-x^2}}}
=\frac{1}{\sqrt{2}}\int \frac{dx}{\sqrt{2-(x^2+x)}}
=\frac{1}{\sqrt{2}}\int \frac{dx}{\sqrt{2-(x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4})}}
=\frac{1}{\sqrt{2}}\int \frac{dx}{\sqrt{2-(x^2+2.x.\frac{1}{2}+\frac{1}{4})}}
=\frac{1}{\sqrt{2}}\int \frac{dx}{\frac{9}{4}-\left(x+\frac{1}{2}\right)^2}
=\frac{1}{\sqrt{2}}\int \dfrac{dx}{\sqrt{\left(\frac{3}{2}\right)^2-\left(x+\frac{1}{2}\right)^2}}
=\frac{1}{\sqrt{2}}\sin ^{-1}\dfrac{\left(x+\frac{1}{2}\right)}{\frac{3}{2}}+C
=\frac{1}{\sqrt{2}}\sin^{-1}\frac{2x+1}{2\times \frac{3}{2}}+C
=\frac{1}{\sqrt{2}}\sin ^{-1}\frac{(2x+1)}{3}+C
Question 7
\int \frac{dx}{\sqrt{16-2x+2x^2}}Sol :
Given : I=\int \frac{dx}{\sqrt{16-2x-2x^2}}
=\int \frac{dx}{\sqrt{2(8-x-x^2)}}
=\frac{1}{\sqrt{2}}\int \frac{dx}{\sqrt{8-(x^2+x)}}
=\frac{1}{\sqrt{2}}\int \frac{dx}{\sqrt{8(x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4})}}
=\frac{1}{\sqrt{2}}\int \frac{dx}{\sqrt{8-(x^2+2.x.\frac{1}{2}+\frac{1}{4})+\frac{1}{4}}}
=\frac{1}{\sqrt{2}}\int \dfrac{dx}{\sqrt{\frac{33}{4}-\left(x+\frac{1}{2}\right)^2}}
=\frac{1}{\sqrt{2}}\int \dfrac{dx}{\sqrt{\left(\frac{\sqrt{33}}{2}\right)^2-\left(x+\frac{1}{2}\right)^2}}
=\frac{1}{\sqrt{2}}\sin ^{-1}\dfrac{\left(x+\frac{1}{2}\right)}{\frac{\sqrt{33}}{2}}+C
=\frac{1}{\sqrt{2}}\sin ^{-1}\dfrac{(2x+1)}{2\times \frac{\sqrt{33}}{2}}+C
I=\frac{1}{\sqrt{2}}\sin ^{-1}\frac{(2x+1)}{\sqrt{33}}+C
Question 8
\int \frac{dx}{\sqrt{x^2+2x+2}}Sol :
Given :
I=\int \frac{dx}{\sqrt{x^2+2x+2}}
=\int \frac{dx}{\sqrt{x^2+2.x.1+1-1+2}}
=\int \frac{dx}{\sqrt{(x^2+2x+1)+1}}
=\int \frac{dx}{\sqrt{(x+1)^2+1^2}}
I=\log \left|(x+1)+\sqrt{(x+1)^2+1}\right|+C
I=\log \left|(x+1)+\sqrt{x^2+2x+2}\right|+C
Question 9
\int \frac{dx}{\sqrt{7-6x-x^2}}Sol :
Given : I=\int \frac{dx}{\sqrt{7-6x-x^2}}
=\int \frac{dx}{\sqrt{7-(x^2+6x)}}
=\int \frac{dx}{\sqrt{7-(x^2+2.x.3+9-9)}}
=\int \frac{dx}{\sqrt{7-(x^2+2.x.3+9)-9}}
=\int \frac{dx}{\sqrt{16-(x^2+2.x.3+9)}}
=\int \frac{dx}{\sqrt{4^2-(x+3)^2}}
I=\sin ^{-1}\frac{(x+3)}{4}+C
Question 10
\int \frac{dx}{\sqrt{5x^2-2x}}Sol :
Given : I=\int \frac{dx}{\sqrt{5x^2-2x}}
=\int \frac{dx}{\sqrt{5(x^2-2.x.\frac{1}{5}+\frac{1}{25}-\frac{1}{25})}}
=\frac{1}{\sqrt{5}}\int \frac{dx}{\sqrt{(x^2-2.x.\frac{1}{5}+\frac{1}{25})-\frac{1}{25}}}
=\frac{1}{\sqrt{5}}\int \frac{dx}{\sqrt{\left(x-\frac{1}{5}\right)^2-\left(\frac{1}{5}\right)^2}}
I=\frac{1}{\sqrt{5}}\log \left|\left(x-\frac{1}{5}\right)+\sqrt{\left(x-\frac{1}{5}\right)^2-\left(\frac{1}{5}\right)^2}\right|+C
I=\frac{1}{\sqrt{5}}\log \left|\left(x-\frac{1}{5}\right)+\sqrt{x^2+\frac{1}{25}-2.x.\frac{1}{5}-\frac{1}{25}}\right|+C
I=\frac{1}{\sqrt{5}}\log \left|\left(x-\frac{1}{5}\right)+\sqrt{x^2-\frac{2x}{5}}\right|+C
Question 11
\int \frac{dx}{\sqrt{8+3x+x^2}}Sol :
Given : I=\int \frac{dx}{\sqrt{8+3x+x^2}}
I=\int \frac{dx}{\sqrt{8-\left(x^2-2x.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)}}
I=\int \frac{dx}{\sqrt{8-\left(x^2-2x.x.\frac{3}{2}+\frac{9}{4}\right)+\frac{9}{4}}}
I=\int \frac{dx}{\sqrt{\frac{41}{4}-\left(x-\frac{3}{2}\right)^2}}
I=\int \dfrac{dx}{\sqrt{\left(\frac{\sqrt{41}}{2}\right)^2-\left(x-\frac{3}{2}\right)^2}}
I=\sin ^{-1} \dfrac{\left(x-\frac{3}{2}\right)}{\frac{\sqrt{41}}{2}}+C
I=\sin^{-1} \dfrac{(2x-3)}{2\times \frac{\sqrt{41}}{2}}+C
I=\sin ^{-1}\dfrac{(2x-3)}{\sqrt{41}}+C
Question 12
\int \frac{dx}{\sqrt{2x-x^2}}Sol :
Given :
I=\int \frac{dx}{\sqrt{2x-x^2}}
=\int \frac{dx}{\sqrt{2x-x^2-1+1}}
=\int \frac{dx}{\sqrt{1-(x^2-2x+1)}}
=\int \frac{dx}{\sqrt{1-(x-1)^2}}
=\sin ^{-1}\frac{(x-1)}{1}+C
=sin-1(x-1)+C
Question 13
(i) \int \frac{dx}{\sqrt{5-4x+x^2}}Sol :
Given :
I=\int \frac{dx}{\sqrt{5-4x+x^2}}
=\int \frac{dx}{\sqrt{x^2-2.x.2+4-4+5}}
=\int \frac{dx}{\sqrt{1+(x^2-2.x.2+4)}}
=\int \frac{dx}{\sqrt{1^2+(x-2)^2}}
=\log \left|(x-2)+\sqrt{(x-2)^2+1}\right|+C
=\log \left|(x-2)+\sqrt{x^2-4x+5}+C\right|
(ii) \int \frac{dx}{\sqrt{(2-x)^2+1}}
Sol :
Given :
I=\int \frac{dx}{\sqrt{(2-x)^2+1}}
=\int \frac{dx}{\sqrt{4+x^2-4x+1}}
=\int \frac{dx}{\sqrt{x^2-4x+5}}
I=\log \left|(x-2)+\sqrt{x^2-4x+5}\right|+C
Question 14
(i) \int \frac{dx}{\sqrt{(x-1)(x-2)}}Sol :
Given :
I=\int \frac{dx}{\sqrt{(x-1)(x-2)}}
=\int \frac{dx}{\sqrt{x^2-2x-x+2}}
=\int \frac{dx}{\sqrt{x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+2}}
=\int \frac{dx}{\sqrt{\left(x^2-2x.\frac{3}{2}+\frac{9}{4}\right)-\frac{1}{4}}}
=\int \frac{dx}{\sqrt{\left(x-\frac{3}{2}\right)^2-\left(\frac{1}{2}\right)^2}}
=\log \left|\left(x-\frac{3}{2}\right)+\sqrt{\left(x-\frac{3}{2}\right)-\left(\frac{1}{2}\right)^2}\right|+C
I=\log \left|\left(\frac{2x-3}{2}\right)+\sqrt{x^2-3x+2}\right|+C
(ii) \int \frac{dx}{\sqrt{(x-1)(2-x)}}
Sol :
Given : I=\int \frac{dx}{\sqrt{(x-1)(2-x)}}
=\int \frac{dx}{\sqrt{2x-x^2-2+x}}
=\int \frac{dx}{\sqrt{3x-x^2-2}}
=\int \frac{dx}{\sqrt{1-x^2+3x-2-1}}
=\int \frac{dx}{\sqrt{1-(x^2-3x+3)}}
=\int \frac{dx}{\sqrt{1-\left(x^2-2x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+3\right)}}
=\int \frac{dx}{\sqrt{1-\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}\right)+\frac{9}{4}-3}}
=\int \frac{dx}{\sqrt{\frac{1}{4}-\left(x-\frac{3}{2}\right)^2}}
=\int \frac{dx}{\sqrt{\left(\frac{1}{2}\right)^2-\left(x-\frac{3}{2}\right)^2}}
=\sin ^{-1} \dfrac{\left(x-\frac{3}{2}\right)}{\frac{1}{2}}+C
=\sin ^{-1}\frac{(2x-3)}{2\times \frac{1}{2}}+C
=sin-1(2x-3)+C
Question 15
\int \frac{dx}{\sqrt{(x-a)(x-b)}}Sol :
Given :
I=\int \frac{dx}{\sqrt{(x-a)(x-b)}}
=\int \frac{dx}{\sqrt{x^2-x(a+b)+ab}}
=\int \dfrac{dx}{\sqrt{x^2-2.x.\frac{(a+b)}{2}-\left(\frac{a+b}{2}\right)^2+ab}}
=\int \dfrac{dx}{\sqrt{\left(x^2-2.x.\frac{(a+b)}{2}+\left(\frac{a+b}{2}\right)^2\right)-\left(\frac{a+b}{2}\right)^2+ab}}
=\int \dfrac{dx}{\sqrt{\left(x-\frac{(a+b)}{2}\right)^2-\frac{(a^2+b^2+2ab)}{4}+ab}}
=\int \dfrac{dx}{\sqrt{\left(x-\frac{(a+b)}{2}\right)^2-\left(\frac{a^2+b^2+2ab}{4}\right)^2+ab}}
=\int \dfrac{dx}{\left(x-\frac{(a+b)}{2}\right)^2-\left(\frac{(a-b)}{2}\right)^2}
=\log \left|\left(x-\frac{(a+b)}{2}\right)+\sqrt{x-\left(\frac{(a+b)}{2})\right)^2-\left(\frac{(a-b)}{2}\right)^2}\right|+C
I=\log \left|\frac{2x-a-b}{2}+\sqrt{(x-a)(x+b)}\right|+C
Question 16
(i) \int \frac{dx}{x^2-16}Sol :
Given : I=\int \frac{dx}{x^2-16}
I=\frac{1}{2\times 4}\log \left|\frac{x-4}{x+4}\right|+C
=\frac{1}{8}\log \left|\frac{x-4}{x+4}\right|+C
(ii) \int \frac{dx}{x(x^5+3)}
Sol :
Given : I=\int \frac{dx}{x(x^5+3)}
Let x5=z
x=z^{\frac{1}{5}}
then 5x4dx=dz
dx=\frac{dz}{5x^4=\frac{1}{5}\times \frac{1}{z^{\frac{4}{5}}}}dz
Now ,
I=\int \frac{dx}{x(x^5+3)}
=\int \dfrac{1}{5} \times \frac{dz}{z^{4/5}z^{\frac{1}{5}}(z+3)}
=\frac{1}{5}\int \dfrac{dz}{z(z+3)}=\frac{1}{5}\int \frac{dz}{z^2+3z}
=\frac{1}{5}\int \dfrac{dz}{\left(z^2+2.z.\frac{3}{2}+\frac{9}{4}\right)-\frac{9}{4}}
=\frac{1}{5}\int \dfrac{dz}{\left(z+\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2}
=\frac{1}{5}\times \dfrac{1}{2\times \frac{3}{2}}\log \left|\dfrac{z+\frac{3}{2}-\frac{3}{2}}{z+\frac{3}{2}+\frac{3}{2}}\right|+C
=\frac{1}{15}\log \left|\frac{z}{z+3}\right|+C
=\frac{1}{15}\log \left|\frac{x^5}{x^5+3}\right|+C
Question 17
\int \frac{dx}{3x^2+13x-10}Sol :
Given : I=\int \frac{dx}{3x^2+13x-10}
=\int \dfrac{dx}{3\left(x^2+\frac{13x}{3}-\frac{10}{3}\right)}
=\int \frac{1}{3}\int \dfrac{dx}{\left(x^2+2.x.\frac{13}{6}+\frac{169}{36}-\frac{10}{3}\right)}
=\frac{1}{3} \int \dfrac{dx}{\left(x+\frac{13}{6}\right)^2-\frac{289}{36}}
=\frac{1}{3}\int \frac{dx}{\left(x+\frac{13}{6}\right)^2-\left(\frac{17}{6}\right)^2}
=\frac{1}{3}\times \dfrac{1}{2\times \frac{17}{6}}\log \left|\dfrac{x+\frac{13}{6}-\frac{17}{6}}{x+\frac{13}{6}+\frac{17}{6}}\right|+C
=\frac{1}{17}\log \left|\dfrac{x-\frac{4}{6}}{x+5}\right|+C
=\frac{1}{17}\log \left|\frac{3x-2}{3(x+5)}\right|+C
=\frac{1}{17}[log(3x-2)-log{3(x+5)}]+C
=\frac{1}{17}[log(3x-2)-{log3+log(x+5)}]+C
=\frac{1}{17}[log(3x-2)-log3-log(x+5)]+C
=\frac{1}{17}\log (3x-2)-\frac{1}{17}\log 3-\frac{1}{17}\log (x+5)+C
=\frac{1}{17}\log (3x-2)-\frac{1}{17}\log (x+6)+C
=\frac{1}{17}[log(3x-2)-log(x+5)]+C
I=\frac{1}{17}\log \left|\frac{3x-2}{x+5}\right|+C
Question 18
\int \frac{dx}{x^2-6x+13}Sol :
Given : I=\int \frac{dx}{x^2-6x+13}
=\int \frac{dx}{(x^2-2.x.3+9)+4}
=\int \frac{dx}{(x-3)^2+2^2}
I=\frac{1}{2}\tan^{-1}\frac{(x-3)}{2}+C
Question 19
(i) \int \sqrt{4-x^2} dxSol :
Given : I=\int \sqrt{4-x^2}
=\int \sqrt{(2)^2-(x)^2}dx
=\frac{x}{2}\sqrt{4-x^2}+\frac{4}{2}\sin^{-1}\frac{x}{2}+C
I=\frac{x\sqrt{4-x^2}}{2}+\frac{2\sin^{-1}x}{2}+C
(ii) \int \sqrt{1-4x^2}
Sol :
Given : I=\int \sqrt{1-4x^2}dx
=\int \sqrt{(1)^2-(2x)^2}dx
=\frac{2x}{2}\sqrt{1-4x^2}+\frac{1}{2}\sin^{-1}\frac{(2x)}{1}+C
=x\sqrt{1-4x^2}+\frac{1}{2}\sin^{-1}(-2x)+C
I=\frac{x\sqrt{1-4x^2}}{2}+\frac{1}{4}\sin^{-1}(2x)+C
Question 20
(i) \int \sqrt{3-2x-x^2}Sol :
Given : I=\int \sqrt{3-2x-x^2}
=\int \sqrt{3-(x^2+2x)}
=\int \sqrt{3-(x^2+2.x.3+1-1)}
=\int \sqrt{3-(x^2+2x+1)+1}
=\int \sqrt{4-(x^2+2x+1)}
=\int \sqrt{(2)^2-(x+1)^2}
=\frac{(x+1)\sqrt{4-(x+1)^2}}{2}+\frac{4}{2}\sin^{-1}\frac{(x+1)}{2}+C
I=\frac{(x+1)}{2}\sqrt{3-2x-x^2}+2\sin^{-1}\left(\frac{x+1}{2}\right)+C
(ii) \int \sqrt{1-4x-x^2} dx
Sol :
Given : I=\int \sqrt{1-4x-x^2} dx
=\int \sqrt{1-(x^2+4x)}dx
=\int \sqrt{1-(x^2+2x.2+4-4)}dx
=\int \sqrt{1-(x^2+2x.2+4)+4}
=\sqrt{5-(x^2+2.x.2+4)}
=\sqrt{(\sqrt{5})^2-(x+2)^2} dx
=\frac{(x+2)}{2}\sqrt{5-(x+2)^2}+\frac{5}{2}\sin^{-1} \left(\frac{x+2}{\sqrt{5}}\right)+C
=\frac{(x+2)}{2}\sqrt{1-4x-x^2}+\frac{5}{2}\sin^{-1} \left(\frac{x+2}{\sqrt{5}}\right)+C
Question 21
\int \sqrt{1+3x-x^2}dxSol :
Given : I=\int \sqrt{1+3x-x^2}dx
=\int \sqrt{1-(x^2-3x)}dx
=\int \sqrt{1-\left(x^2-2x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)}dx
=\int \sqrt{1-\left(x^2-2x.\frac{3}{2}+\frac{9}{4}\right)+\frac{9}{4}}dx
=\int \sqrt{\frac{13}{4}-\left(x-\frac{3}{2}\right)^2}dx
=\int \sqrt{\left(\frac{\sqrt{13}}{2}\right)^2-\left(x-\frac{3}{2}\right)^2}dx
=\dfrac{\left(x-\frac{3}{2}\right)}{2}\sqrt{\left(\frac{\sqrt{13}}{2}\right)^2-\left(x-\frac{3}{2}\right)^2}+\frac{13}{4\times 2}\sin^{-1}\dfrac{x-\frac{3}{2}}{\frac{\sqrt{13}}{2}}+C
=\frac{2x-3}{4}\sqrt{1+3x-x^2}+\frac{13}{8}\sin^{-1}\dfrac{(2x-3)}{\frac{\sqrt{13}}{2}\times 2}+C
I=\frac{(2x-3)}{4}\sqrt{1+3x-x^2}+\frac{13}{8}\sin^{-1} \frac{(2x-3)}{\sqrt{13}}+C
Question 22
\int \sqrt{x^2+4x-5}dxSol :
Given : I=\int \sqrt{x^2+4x-5}dx
=\int \sqrt{x^2+2.x.2+4-4-5}dx
=\int \sqrt{(x^2+2.x.2+4)-9}dx
=\int \sqrt{(x+2)^2-(3)^2}
=\frac{(x+2)}{2}\sqrt{(x+2)^2-(3)^2}-\frac{9}{2}\log \left|(x+2)+\sqrt{(x+2)^2-(3)^2}\right|+C
=\frac{x+2}{2}\sqrt{x^2+4x-5}-\frac{9}{5}\log \left|x+2+\sqrt{x^2+4x-5}\right|+C
Question 23
\int \sqrt{x^2+4x+1}dxSol :
Given : I=\int \sqrt{x^2+4x+1}dx
=\int \sqrt{x^2+2x.2+4-4+1}dx
=\int \sqrt{(x^2+2.x.2+4)-3}dx
=\int \sqrt{(x+2)^2-(\sqrt{3})^2}dx
=\frac{x+2}{2}\sqrt{(x+2)^2-(\sqrt{3})^2}-\frac{3}{2}\log \left|x+2+\sqrt{(x+2)^2-(\sqrt{3})^2}\right|+C
I=\frac{x+2}{2}\sqrt{x^2+4x+1}-\frac{3}{2}\log \left|x+2+\sqrt{x^2+4x+1}\right|+C
Question 24
(i) \int \sqrt{x^2+3x}dxSol :
Given : I=\int \sqrt{x^2+3x}dx
=\int \sqrt{\left(x^2+2.x\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)}
=\int \sqrt{(x+\frac{3}{2})^2-\left(\frac{3}{2}\right)^2}
=\dfrac{\left(x+\frac{3}{2}\right)}{2}\sqrt{\left(x+\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2}-\frac{9}{4\times 2} \log \left|\left(x+\frac{3}{2}\right)+\sqrt{\left(x+\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2}\right|+C
I=\frac{2x+3}{4}\sqrt{x^2+3x}-\frac{9}{8}\log \left|x+\frac{3}{2}+\sqrt{x^2+3x}\right|+C
(ii) \int \sqrt{x^2-8x+7}dx
Sol :
Given : I=\int \sqrt{x^2-8x+7}dx
=\int \sqrt{x^2-2x.4+16-16+7}dx
=\int \sqrt{(x^2-2x.4+16)-9}dx
=\int \sqrt{(x-4)^2-(3)^2}dx
=\frac{(x-4)}{2}\sqrt{(x-4)^2-(3)^2}-\frac{9}{2}\log \left|x-4+\sqrt{(x-4)^2-(3)^2}\right|+C
I=\frac{x-4}{2}\sqrt{x^2-8x+7}-\frac{9}{2}\log \left|x-4+\sqrt{x^2-8x+7}\right|+C
Question 25
(i) \int \sqrt{1+x^2}dxSol :
Given : I=\int \sqrt{1+x^2}dx
=\int \sqrt{(1)^2+(x)^2}dx
=\frac{x}{2}\sqrt{x^2+1}+\frac{1}{2}\log \left|x+\sqrt{x^2+1}\right|+C
=\frac{x\sqrt{1+x^2}}{2}+\frac{1}{2}\log\left|x+\sqrt{1+x^2}\right|+C
(ii) \int \sqrt{1+\frac{x^2}{9}}dx
Sol :
Given : I=\int \sqrt{1+\frac{x^2}{9}}dx
=\int \sqrt{\frac{9+x^2}{9}}dx
=\int \frac{\sqrt{9+x^2}}{3}dx
=\frac{1}{3}\int \sqrt{x^2+9}dx
=\frac{1}{3} \int \sqrt{(x)^2+(3)^2}dx
=\frac{1}{3}\left[\frac{x}{2}\sqrt{x^2+9}+\frac{9}{2}\log \left|x+\sqrt{x^2+9}\right|\right]+C
I=\frac{x}{6}\sqrt{x^2+9}+\frac{3}{2}\log \left|x+\sqrt{x^2+9}\right|+C
Question 26
\int \sqrt{x^2+4x+6}dxSol :
Given : I=\int \sqrt{x^2+4x+6}dx
=\int \sqrt{x^2+2.x.2+4-4+6}dx
=\int \sqrt{(x^2+2.x.2+4)+2}dx
=\int \sqrt{(x+2)^2+(\sqrt{2})^2}dx
=\frac{(x+2)}{2}\sqrt{(x+2)^2+(\sqrt{2})^2}+\frac{2}{2}\log \left|x+2+\sqrt{(x+2)^2+(\sqrt{2})^2}\right|+C
I=\frac{x+2}{2}\sqrt{x^2+4x+6}+\log \left|x+2+\sqrt{x^2+4x+6}\right|+C
Question 27
\int \sqrt{x^2+2x+5}dxSol :
Given : I=\int \sqrt{x^2+2x+5}dx
=\int \sqrt{(x^2+2.x.1+1)-1+5}dx
=\int \sqrt{(x+1)^2+(2)^2}dx
=\frac{(x+1)}{2}\sqrt{(x+1)^2+(2)^2}+\frac{4}{2}\log \left|(x+1)+\sqrt{(x+1)^2+(2)^2}\right|+C
=\frac{x+1}{2}\sqrt{x^2+2x+5}+2\log \left|x+1+\sqrt{x^2+2x+5}\right|+C
Question 28
\int \frac{x+3}{x^2-2x+5}dxSol :
Given : I=\int \frac{x+3}{x^2-2x+5}dx
x+3=A(2x-2)+B
2A.x-2A+B
Equating the coefficient of similar power of x
2A=1 and 3=-2A+B
A=\frac{1}{2} and B=3+2A=3+2\times \frac{1}{2}=3+1=4
Now , I=\int \frac{x+3}{x^2-2x-5}dx
\int \dfrac{\frac{1}{2}(2x-2)+4}{x^2-2x-5}dx
=\frac{1}{2}\int \frac{2x-2}{x^2-2x-5}dx+4\int \frac{1}{x^2-2x-5}dx
=\frac{1}{2}\int \frac{1}{z}dx+4\int \frac{1}{(x^2-2.x.1+1-1-5)}dx
=\frac{1}{z}\log |z|+4\int \frac{dx}{(x-1)^2-(\sqrt{6})^2}
=\frac{1}{2}\log \left|x^2-2x-5\right|+4\left[\frac{1}{2\sqrt{6}}\log \left|\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}}\right|\right]+C
I=\frac{1}{2}\log \left|x^2-2x-5\right|+\frac{2}{\sqrt{6}}\log \left|\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}}\right|+C
Question 29
\int \frac{5x-2}{1+2x+3x^2}dxSol :
Given : I=\int \frac{5x-2}{1+2x+3x^2}dx
5x-2=A(6x+2)+B=6Ax+2A+B
Equating the coefficient of similar power of x
6A=5 and 2A+B=-2
A=\frac{5}{6} and B=-2-2A=-2-2×\frac{5}{6}
A=\frac{5}{6} and B=\frac{-11}{3}
Now , I=\int \frac{5x-2}{3x^2+2x+1}dx
=\int \dfrac{\frac{5}{6}(6x+2)-\frac{11}{3}}{3x^2+2x+1}dx
=\frac{5}{6}\int \frac{6x+2}{3x^2+2x+1}dx-\frac{11}{3}\int \frac{dx}{3x^2+2x+1}
=\frac{5}{6}\int \frac{dz}{z}-\frac{11}{3} \int \frac{dx}{3\left(x^2+2.x.\frac{1}{3}+\frac{1}{3}\right)}
=\frac{5}{6}\log |z|-\frac{11}{3\times 3}\int \frac{dx}{\left(x^2+2.x.\frac{1}{3}+\frac{1}{9}-\frac{1}{9}+\frac{1}{3}\right)}
=\frac{5}{6}\log \left|3x^2+2x+1\right|-\frac{11}{9}\int \dfrac{dx}{\left(x+\frac{1}{3}\right)^2+\left(\frac{\sqrt{2}}{3}\right)}
=\frac{5}{6}\log \left|3x^2+2x+1\right|-\frac{11}{9}\times \dfrac{1}{\frac{\sqrt{12}}{3}}\tan^{-1}\dfrac{\left(x+\frac{1}{3}\right)}{\frac{\sqrt{2}}{3}}+C
=\frac{5}{6}\log \left|3x^2+2x+1\right|-\frac{11}{3\sqrt{2}}\tan^{-1} \dfrac{\left(3x+1\right)}{3\times \frac{\sqrt{2}}{3}}+C
I=\frac{5}{6} \log \left|3x^2+2x+1\right|-\frac{11}{3\sqrt{2}}\tan ^{-1}\frac{(3x+1)}{\sqrt{2}}+C
Question 30
\int \frac{x+2}{2x^2+6x+5}Sol :
Given : I=\int \frac{x+2}{2x^2+6x+5}
x+2=A(4x+6)+B=4Ax+6A+B
Equating the coefficient of similar power of x
4A=1 and 6A+B=2
A=\frac{1}{4} and
B=2-6A=2-6\times \frac{1}{4}
=2-\frac{3}{2}=\frac{1}{2}
Now , I=\int \frac{x+2}{2x^2+6x+5}dx
=\int \dfrac{\frac{1}{4}(4x+6)+\frac{1}{1}}{2x^2+6x+5}dx
=\frac{1}{4}\int \frac{4x+6}{2x^2+6x+5}dx+\frac{1}{2}\int \frac{dx}{2x^2+6x+5}
=\frac{1}{4}\int \frac{dz}{z}+\frac{1}{2}\int \dfrac{dx}{2(x^2+3x+\frac{5}{2})}
=\frac{1}{4}\int \frac{dz}{z}+\frac{1}{2\times 2}\int \dfrac{dx}{\left(x^2+2x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+\frac{5}{2}\right)}
=\frac{1}{4}\log~z+\frac{1}{4}\int \dfrac{dx}{\left(x+\frac{3}{2}\right)^2+\frac{1}{4}}
=\frac{1}{4} \log~z+\frac{1}{4}\int \dfrac{dx}{\left(x+\frac{3}{8}\right)^2+\left(\frac{1}{2}\right)^2}
=\frac{1}{4}\log \left|2x^2+6x+5\right|+\frac{1}{4}\dfrac{1}{\frac{1}{2}}\tan^{-1} \dfrac{\left(x+\frac{3}{2}\right)}{\frac{1}{2}}+C
=\frac{1}{4}\log \left|2x^2+6x+5\right|+\frac{2}{4}\tan^{-1}\dfrac{2x+3}{2\times \frac{1}{2}}+C
I=\frac{1}{4}\log \left|2x^2+6x+5\right|+\frac{1}{2}\tan^{-1} (2x+3)+C
Question 31
\int \frac{3x+1}{2x^2-2x+3}dxSol :
Given: I=\int \frac{3x+1}{2x^2-2x+3}dx
3x+1=A(4x-2)+B=4Ax-2A+B
Equating the coefficient of similar power of x
4A=3 and
-2A+B=1
B=1+2A
∴A=\frac{3}{4} and B=1+2\times \frac{3}{4}=1+\frac{3}{2}=\frac{5}{2}
Now,
I=\int \frac{3x+1}{2x^2-2x+3}dx
=\int \frac{A(4x-2)+B}{2x^2-2x+3}dx
=\int \dfrac{\frac{3}{4}(4x-2)+\frac{5}{2}}{2x^2-2x+3}dx
=\frac{3}{4}\int \frac{4x-2}{2x^2-2x+3}+\frac{5}{2} \int \frac{dx}{2x^2-2x+3}
=\frac{3}{4}\int \frac{dz}{z}+\frac{5}{2}\frac{dx}{2(x^2-x+\frac{3}{2})}
=\frac{3}{4}\int \frac{1}{z}dz+\frac{5}{2\times 2}\int \frac{dx}{\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{3}{2}\right)}
=\frac{3}{4}\log \left|2x^2-2x+3\right|+\frac{5}{4}\int \dfrac{dx}{\left(x-\frac{1}{2}\right)^2+\frac{5}{4}}
=\frac{3}{4}\log \left|2x^2-2x+3\right|+\frac{5}{4}\int \dfrac{dx}{\left(x-\frac{1}{2}\right)^2+\left(\frac{\sqrt{5}}{2}\right)^2}
=\frac{3}{4}\log \left|2x^2-2x+3\right|+\frac{5}{4}\times \dfrac{1}{\frac{\sqrt{5}}{2}}\tan^{-1}\dfrac{\left(x-\frac{1}{2}\right)}{\frac{\sqrt{5}}{2}}+C
=\frac{3}{4}\log \left|2x^2-2x+3\right|+\frac{\sqrt{5}}{2}\tan^{-1}\left(\dfrac{2x-1}{2\times \frac{\sqrt{5}}{2}}\right)+C
I=\frac{3}{4}\log \left|2x^2-2x+3\right|+\frac{\sqrt{5}}{2}\tan^{-1}(2x-1)+C
Question 32
(i) \int \frac{x-1}{\sqrt{x^2-1}}dxSol :
Given : I=\int \frac{x-1}{\sqrt{x^2-1}}dx
Let x-1=A\frac{d}{dx}(x^2-1)+B
=A(2x)+B
=2Ax+B
Equating the coefficient of similar power of x
2A-1 and B=-1
∴A=\frac{1}{2}
Now , =\int \frac{x-1}{\sqrt{x^2-1}}dx
=\int \frac{A(2x)+B}{\sqrt{x^2-1}}dx
=\int \dfrac{\frac{1}{2}(2x)-1}{\sqrt{x^2-1}}dx
=\frac{1}{2} \int \frac{2x}{\sqrt{x^2-1}}-\int \frac{1}{\sqrt{x^2-1}}dx
=\frac{1}{2}\int \frac{dz}{\sqrt{z}}-\int \frac{1}{\sqrt{(x)^2-(1)^2}}
=\frac{1}{2}\int z^{-\frac{1}{2}}dz-\log \left|x+\sqrt{x^2-1}\right|+C
=\frac{1}{2}\dfrac{z^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}-\log\left|x+\sqrt{x^2-1}\right|+C
=\frac{1}{2}\dfrac{z^{\frac{1}{2}}}{\frac{1}{2}}-\log \left|x+\sqrt{x^2-1}\right|+C
=\sqrt{z}-\log\left|x+\sqrt{x^2-1}\right|+C
I=\sqrt{x^2-1}-\log \left|x+\sqrt{x^2-1}\right|+C
(ii) \int \frac{x+2}{\sqrt{x^2-1}}dx
Sol :
Given : I=\int \frac{x+2}{\sqrt{x^2-1}}dx
x+2=2A(x)+B
∴2A=1 and B=2
A=\frac{1}{2}
Now , I=\int \frac{x+2}{\sqrt{x^2-1}}dx
=\int \frac{A(2x)+B}{\sqrt{x^2-1}}dx
=\int \dfrac{\frac{1}{2}\times 2x+2}{\sqrt{x^2-1}}dx
=\frac{1}{2}\int \frac{2x}{\sqrt{x^2-1}}dx+\int \frac{2}{\sqrt{x^2-1}}dx
=\frac{1}{2}\int \frac{dz}{\sqrt{z}}+2\int \frac{dx}{\sqrt{(x)^2-(1)^2}}
=\frac{1}{2}\int z^{-\frac{1}{2}}dz+2\log \left|x+\sqrt{x^2-1}\right|+C
=\frac{1}{2}\int \frac{z^{-\frac{1}{2}}}{-\frac{1}{2}+1}+2\log \left|x+\sqrt{x^2-1}\right|+C
=\sqrt{z}+2\log \left|x+\sqrt{x^2-1}\right|+C
I=\sqrt{x^2-1}+2\log \left|x+\sqrt{x^2-1}\right|+C
Question 33
\int \frac{x+2}{\sqrt{4x-x^2}}dxSol :
Given : I=\int \frac{x+2}{\sqrt{4x-x^2}}dx
x+2=4A-2Ax+B
Equating the coefficient of similar power of x
we get -2A=1 and 4A+B=2
A=\frac{1}{2} B=2-4A=2-4\times \left(-\frac{1}{2}\right)
B=2+2=4
Now , I=\int \frac{x+2}{\sqrt{4x-x^2}}dx
=\int \frac{A(4-2x)+B}{\sqrt{4x-x^2}}dx
=\int \dfrac{-\frac{1}{2}(4-2x)+4}{\sqrt{4x-x^2}}dx
=-\frac{1}{2}\int \frac{(4-2x)dx}{\sqrt{4x-x^2}}+4\int \frac{dx}{\sqrt{4x-x^2}}
=-\frac{1}{2} \int \frac{dz}{\sqrt{z}}+4\int \frac{dx}{\sqrt{4-(x^2-4x+4)}}
=-\frac{1}{2}\dfrac{z^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}+4\int \frac{dx}{\sqrt{(2)^2-(x-2)^2}}
=-\frac{1}{2}\dfrac{z^{\frac{1}{2}}}{\frac{1}{2}}+4\sin^{-1}\frac{(x-2)}{2}+C
-\sqrt{z}+4\sin^{-1}\frac{(x-2)}{2}+C
I=-\sqrt{4x-x^2}+4\sin^{-1}(x-2)+C
Question 34
\int \frac{x+1}{\sqrt{2x-x^2}}dxSol :
Given : I=\int \frac{x+1}{\sqrt{2x-x^2}}dx
x+1=2A-2Ax+B
Equating the coefficient of similar power of x
We get 1=-2A and B+2A=1
A=-\frac{1}{2} B=1-2A=1-2\times \left(-\frac{1}{2}\right)=2
Now , I=\int \frac{x+1}{\sqrt{2x-x^2}}dx
=\int \frac{A(2-2x)+B}{\sqrt{2x-x^2}}dx
=\int \frac{A(2-2x)dx}{\sqrt{2x-x^2}}dx+\int \frac{B}{\sqrt{2x-x^2}}dx
=A\int \frac{(2-2x)dx}{\sqrt{2x-x^2}}+B\int \frac{dx}{\sqrt{2x-x^2}}
=-\frac{1}{2}\int \frac{dz}{\sqrt{z}}+2\int \frac{dx}{\sqrt{2x-x^2-1+1}}
=-\frac{1}{2}\int z^{-\frac{1}{2}dz}+2\int \frac{dx}{\sqrt{1-(x^2-2x+1)}}
=-1.\dfrac{z^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}+2\int \frac{dx}{\sqrt{(1)^2-(x-1)^2}}
=-\frac{1}{2}\times \dfrac{z^{\frac{1}{2}}}{\frac{1}{2}}+2\sin^{-1}\frac{(x-1)}{1}+C
=-√z+2sin-1(x-1)+C
=-√2x-x2+2sin-1(x-1)+C
Question 35
\int \frac{2x+1}{\sqrt{7+6x-3x^2}}Sol :
Given : I=\int \frac{2x+1}{\sqrt{7+6x-3x^2}}
2x+1=6A-6Ax+B
Equating the coefficient of similar power of x
We get -6A=2 and 6A+B=1
A=-\frac{2}{3}=-\frac{1}{3}
B=1-6A=1-6\times \left(-\frac{1}{3}\right)
=1+2=3
Now , I=\int \frac{2x+1}{\sqrt{7+6x-3x^2}}
=\int \frac{A(6-6x)+B}{\sqrt{7+6x-3x^2}}
=\int \frac{A(6-6x)}{\sqrt{7+6x-3x^2}}dx+\int \frac{B}{\sqrt{7+6x-3x^2}}dx
=A\int \frac{(6-6x)dx}{\sqrt{7+6x-3x^2}}+B\int \frac{dx}{\sqrt{7+6x-3x^2}}
=-\frac{1}{3}\int \frac{dz}{\sqrt{z}}+3\int \frac{dx}{\sqrt{7+3-3+6x-3x^2}}
=-\frac{1}{3}2\sqrt{z}+3\int \frac{10}{\sqrt{10-(3x^2-6x+3)}}
=-\frac{2}{3}\sqrt{z}+3\int \frac{dx}{\sqrt{(\sqrt{10})^2-(\sqrt{3}x-\sqrt{3})^2}}
=-\frac{2}{3}\sqrt{7+6x-3x^2}+3\frac{\sin^{-1}(\sqrt{3}x-\sqrt{3})}{\sqrt{3}\times \sqrt{10}}+C
I=-\frac{2}{3}\sqrt{7+6x-3x^2}+\sqrt{3}\frac{\sin^{-1}\sqrt{3}(x-1)}{\sqrt{10}}+C
Question 36
\int \frac{4x+1}{\sqrt{2x^2+x-3}}dxSol :
Given : I=\int \frac{4x+1}{\sqrt{2x^2+x-3}}dx
Let z=2x2+x-3 then dz=(4x+1)dx
Now , I=\int \frac{4x+1}{\sqrt{2x^2+x-3}}dx=\int \frac{dz}{\sqrt{z}}
=\int z^{-\frac{1}{2}}dz
=\dfrac{z^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}+C
=2\sqrt{z}+C
=2\sqrt{2x^2+x-3}+C
Question 37
\int \frac{5x+3}{\sqrt{x^2+4x+10}}dxSol :
Given : I=\int \frac{5x+3}{\sqrt{x^2+4x+10}}dx
Let 5x+3=A\frac{d}{dx}(x^2+4x+10) =A(2x+4)+B
5x+3=2Ax+4A+B
Equating the coefficient of similar power of x
We get 2A=5 and 4A+B=3
A=\frac{5}{2} and
B=3-4A=3-4\times \frac{5}{2}
B=3-10=-7
Now , I=\int \frac{5x+3}{\sqrt{x^2+4x+10}}dx
=\int \frac{A(2x+4)+B}{\sqrt{x^2+4x+10}}
=A\int \frac{(2x+4)}{\sqrt{x^2+4x+10}}dx+B\int \frac{dx}{\sqrt{x^2+4x+10}}
I=\frac{5}{2}\int \frac{(2x+4)}{\sqrt{x^2+4x+10}}dx-7\int \frac{dx}{\sqrt{x^2+4x+4+6}}
=\frac{5}{2}\int \frac{dz}{\sqrt{z}}-7\int \frac{dx}{\sqrt{x^2+2.x.2+4+6}}
I=\frac{5}{2}.2\sqrt{z}-7\int \frac{dx}{\sqrt{(x+2)^2+(\sqrt{6})^2}}
=5\sqrt{z}-7\log \left|x+2+\sqrt{(x+2)^2+(\sqrt{6})^2}\right|+C
I=5\sqrt{x^2+4x+10}-7\log \left|(x+2)+\sqrt{x^2+4x+10}\right|+C
Question 38
\int \frac{x+3}{\sqrt{5-4x-x^2}}Sol :
Given : I=\int \frac{x+3}{\sqrt{5-4x-x^2}}
x+3=-4A-2Ax+B=-2Ax+B-4A
Equating the coefficient of similar power of x
We get -2A=1 and B-4A=3
∴A=-\frac{1}{2}
B=3+4A=3+4\times -\frac{1}{2}
=3-2=1
Now , I=\int \frac{x+3}{\sqrt{5-4x-x^2}}
=\int \frac{A(-4-2x)+B}{\sqrt{5-4x-x^2}}dx
=\int \frac{A(-4-2x)}{\sqrt{5-4x-x^2}}dx+\int \frac{B}{\sqrt{5-4x-x^2}}dx
=A\int \frac{(-4-2x)}{\sqrt{5-4x-x^2}}dx+B\int \frac{dx}{\sqrt{5-4x-x^2}}
I=-\frac{1}{2}\int \frac{dz}{\sqrt{z}}+1\int \frac{dx}{\sqrt{5+4-4-4x-x^2}}
=-\frac{1}{2}\times 2\sqrt{z}+\int \frac{dx}{\sqrt{9-(x^2+4x+4)}}
=-\sqrt{z}+\int \frac{dx}{\sqrt{(3)^2-(x+2)^2}}
=-\sqrt{5-4x-x^2}+\sin^{-1}\frac{(x+2)}{3}+C
Question 39
\int \frac{x+2}{\sqrt{x^2-2x+3}}dxSol :
Given : I=\int \frac{x+2}{\sqrt{x^2-2x+3}}dx
Let x+2=A\frac{d}{dx}(x^2-2x+3)+B=A(2x-2)+B
x+2=2Ax-2A+B
Equating the coefficient of similar power of x
We get 1=2A and B-2A=2
∴A=\frac{1}{2}
B=2+2A=2+2\times \frac{1}{2}=3
Now , I=\int \frac{x+2}{\sqrt{x^2-2x+3}}dx
=\int \frac{A(2x-2)+B}{\sqrt{x^2-2x+3}}
=\int \frac{A(2x-2)}{\sqrt{x^2-2x+3}}dx+\int \frac{B}{\sqrt{x^2-2x+3}}dx
=\int \frac{A(2x-2)}{\sqrt{x^2-2x+3}}dx+\int \frac{B}{\sqrt{x^2-2x+3}}dx
=A\int \frac{(2x-2)}{\sqrt{x^2-2x+3}}dx+B\int \frac{dx}{\sqrt{x^2-2x+3}}
=\frac{1}{2}\int \frac{dz}{\sqrt{z}}+3\int \frac{dx}{\sqrt{x^2-2x+1+2}}
I=\frac{1}{2}\times 2\sqrt{z}+3\int \frac{dx}{\sqrt{(x-1)^2+(\sqrt{2})^2}}
=\sqrt{z}+3\log \left|x-1+\sqrt{(x-1)^2+(\sqrt{2})^2}\right|+C
I=\sqrt{x^2-2x+3}+3\log \left|x-1+\sqrt{x^2-2x+3}\right|+C
Question 40
\int \frac{6x+7}{(x-5)(x-4)}dxSol :
Given : I=\int \frac{6x+7}{(x-5)(x-4)}dx
= \int \frac{6x+7}{\sqrt{(x^2-4x-5x+20)}}
=\int \frac{6x+7}{\sqrt{x^2-9x+20}}dx
Let 6x+7=A\frac{d}{dx}(x^2-9x+20)+B=A(2x-9)+B
6x+7=2Ax-9A+B
Equating the coefficient of similar power of x
We get , 2A=6 and B-9A=7
A=3 B=9A+7=27+7=34
Now , I=\int \frac{6x+7}{\sqrt{x^2-9x+20}}
=\int \frac{A(2x-9)+B}{\sqrt{x^2-9x+20}}dx
=A\int \frac{dz}{\sqrt{z}}+B\int \frac{dx}{\sqrt{\left(x^2-2.x.\frac{9}{2}+\frac{81}{4}\right)-\frac{81}{4}+20}}
I=3\times 2\sqrt{2}+34\int \frac{dx}{\sqrt{\left(x-\frac{9}{2}\right)^2-\frac{1}{4}}}
=6\sqrt{z}+34\int \frac{dx}{\sqrt{\left(x-\frac{9}{8}\right)^2-\left(\frac{1}{2}\right)^2}}
=6\sqrt{x^2-9x+20}+34\log \left|\left(x-\frac{9}{8}\right)+\sqrt{\left(x-\frac{9}{8}\right)^2-\left(\frac{1}{2}\right)^2}\right|+C
=6\sqrt{x^2-9x+20}+34\log \left|x-\frac{9}{8}+\sqrt{x^2-9x+20}\right|+C
Question 41
(i) \int (x+2)\sqrt{x^2+1}dxSol :
Given : I=\int (x+2)\sqrt{x^2+1}dx
=\frac{1}{2}\int 2x\sqrt{x^2+1}dx+2\int \sqrt{(x)^2+(1)^2}dx
=\frac{1}{2}\int \sqrt{z}dz+2\left[\frac{x}{2}\sqrt{x^2+1}+\frac{1}{2}\log \left|x+\sqrt{x^2+1}\right|\right]+C
=\frac{1}{2}\times \frac{2}{3}z^{\frac{3}{2}}+x\sqrt{x^2+1}+\log \left|x+\sqrt{x^2+1}\right|+C
(ii) \int (x+1) \sqrt{2x^2+3}dx
Sol :
Given : I=\int (x+1) \sqrt{2x^2+3}dx
=\int x.\sqrt{2x^2+3}dx+\int \sqrt{2x^2+3}dx
=\frac{1}{4}\int 4x\sqrt{2x^2+3}dx+\int \sqrt{2\left(x^2+\frac{3}{2}\right)}dx
Let z=2x2+3 then dz=4xdx
Now , I=\frac{1}{4}\int 4x\sqrt{2x^2+3}dx+\sqrt{2}\int \sqrt{x^2+\frac{3}{2}}dx
=\frac{1}{4}\int \sqrt{2x^2+3}4xdx+\sqrt{2} \int \sqrt{(x)^2+\left(\sqrt{\frac{3}{2}}\right)^2}dx
=\frac{1}{4}\int \sqrt{z}dz+\sqrt{2}\left[\frac{x}{2}\sqrt{(x)^2+\left(\frac{\sqrt{3}}{\sqrt{2}}\right)^2}+\frac{3}{2\times 2}\log \left|x+\sqrt{x^2+\frac{3}{2}}\right|\right]+C
=\frac{1}{4}\times \frac{2}{3}z^{\frac{3}{2}} +\sqrt{2}\left[\frac{x}{2}\sqrt{x^2+\frac{\sqrt{3}}{\sqrt{2}}}+\frac{3}{4}\log \left|x+\sqrt{x^2+\frac{3}{2}}\right|\right]+C
=\frac{1}{6}(2x^2+3)^{3/2}+\sqrt{2}\left[\frac{x}{2}\sqrt{\frac{2x^2+3}{2}}+\frac{3}{4}\log \left|x+\sqrt{x^2+\frac{3}{2}}\right|\right]
=\frac{1}{6}(2x^2+3)^{3/2}+\sqrt{2}\left[\frac{x}{2}\sqrt{\frac{2x^2+3}{\sqrt{2}}}+\frac{3}{4}\log \left|x+\sqrt{x^2+\frac{3}{2}}\right|\right]
=\frac{1}{6}(2x^2+3)^{3/2}+\frac{x}{2}\sqrt{2x^2+3}+\frac{3\sqrt{2}}{4}\log\left|x+\sqrt{x^2+\frac{3}{2}}\right| +C
Question 42
\int x.\sqrt{x+x^2}dxSol :
Given : I=\int x.\sqrt{x+x^2}dx
=\frac{1}{2}\int (2x+1-1)\sqrt{x+x^2}dx
=\frac{1}{2}\int (2x+1)\sqrt{x+x^2}dx-\frac{1}{2}\int \sqrt{x^2+x}dx
=\frac{1}{2}\int \sqrt{x^2+x}(2x+1)dx-\frac{1}{2}\int \sqrt{x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}}
=\frac{1}{2}\int \sqrt{z}dz-\frac{1}{2}\int \sqrt{\left(x+\frac{1}{2}\right)^2-\left(\frac{1}{2}]\right)^2}dx
=\frac{1}{2}\times \frac{2}{3}z^{\frac{3}{2}}-\frac{1}{2}\left[\dfrac{\left(x+\frac{1}{2}\right)}{2}\sqrt{\left(x+\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2}-\frac{1}{4\times 2}\log \left|x+\frac{1}{2}+\sqrt{\left(x+\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2}\right|\right]+C
=\frac{1}{3}z^{\frac{3}{2}}-\frac{1}{2}\left[\frac{2x+1}{2\times 2}\sqrt{x^2+x}-\frac{1}{8}\log \left|x+\frac{1}{2}+\sqrt{x^2+x}\right|\right]+C
=\frac{1}{3}z^{3/8}-\frac{(2x+1)}{8}\sqrt{x^2+x}+\frac{1}{16}\log \left|x+\frac{1}{2}+\sqrt{x^2+x}\right|+C
I=\frac{1}{3}(x^2+x)^{3/2}-\frac{1}{8}(2x+1)\sqrt{x^2+x}+\frac{1}{16}\log \left|x+\frac{1}{2}+\sqrt{x^2+x}\right|+C
Question 43
(i) \int (x+3)\sqrt{3-4x-x^2}dxSol :
Given : I=\int (x+3)\sqrt{3-4x-x^2}dx
=\frac{1}{2}\int 2(x+3)\sqrt{3-4x-x^2}dx
=\frac{1}{2}\int (2x+6)\sqrt{3-4x-x^2}dx
=\frac{1}{2} \int (2x+4+2)\sqrt{3-4x-x^2}dx
=\frac{1}{2} \int (2x+4) \sqrt{3-4x-x^2}dx+\frac{1}{2}\int 2\sqrt{3-4x-x^2}dx
Let z=3-4x-x2 then dz=-4-2x=-(2x+4)dx
∴-dz=(2x+4)dx
Now I=\frac{1}{2}\int \sqrt{z}(-dz)+\int \sqrt{3-(x^2+4x)}dx
=-\frac{1}{2}\times \frac{2}{3}z^{3/2}+\int \sqrt{3-(x^2+4x+4-4)}dx
=-\frac{1}{3}z^{3/2}+\int \sqrt{3-(x^2+4x+4)+4}dx
=-\frac{1}{3}z^{3/2}+\int \sqrt{7-(x^2+4x+4)}dx
=-\frac{1}{3}z^{3/2}+\int \sqrt{(\sqrt{7})^2-(x^2)^2}dx
-\frac{1}{3}(3-4x-x^2)^{3/2}+\frac{(x+2)}{2}\sqrt{(\sqrt{7})^2-(x+2)^2}+\frac{(\sqrt{7})^2}{2}\sin ^{-1}\frac{(x+2)}{7}+C
I=-\frac{1}{3}(3-4x-x^2)^{3/2}+\frac{(x+2)}{2}\sqrt{3-4x-x^2}+\frac{7}{2}\sin^{-1}\frac{(x+2)}{\sqrt{7}}+C
(ii) \int x\sqrt{1+x-x^2}
Sol :
Given : I=\int x\sqrt{1+x-x^2}dx
=\frac{1}{2}\int 2x\sqrt{1+x-x^2}dx
=\frac{1}{2}\int (2x-1+1)\sqrt{1+x-x^2}dx
=\frac{1}{2}\int (2x-1)\sqrt{1+x-x^2}dx+\frac{1}{2}\int \sqrt{1+x-x^2}dx
Let z=1+x-x2 then dz=(1-2x)dx=-(2x-1)dx
-dz=(2x-1)dx
Now =\frac{1}{2}\int \sqrt{1+x-x^2}(2x-1)dx+\frac{1}{2}\int \sqrt{1+x-x^2}dx
=\frac{1}{2}\int \sqrt{z}(-dz)+\frac{1}{2}\int \sqrt{1-(x^2-x)}dx
=-\frac{1}{2}\int \sqrt{z}dz+\frac{1}{2}\int \sqrt{1-4\frac{(x^2-x)}{4}}dx
=-\frac{1}{2}\times \frac{2}{3}z^{3/2}+\frac{1}{2}\int \sqrt{\frac{4-(4x^2-4x+1-1)}{4}}dx
=-\frac{1}{3}z^{3/2}+\frac{1}{2}\int \frac{\sqrt{4-(4x^2-4x+1)+1}}{2}dx
=-\frac{1}{3}z^{3/2}+\frac{1}{4}\int \sqrt{5-(4x^2-4x+1)}dx
=-\frac{1}{3}z^{3/2}+\frac{1}{4}\int \sqrt{(\sqrt{5})^2-(2x-1)^2}dx
=-\frac{1}{3}z^{3/2}+\frac{1}{4}\left[\frac{(2x-1)}{2}\sqrt{(\sqrt{5})^2-(2x-1)^2}+\frac{5}{2\times 2}\sin^{-1}\frac{2x-1}{\sqrt{5}}\right]
=-\frac{1}{3}(1+x-x^2)^{3/2}+\frac{(2x-1)}{8}\sqrt{1+x-x^2}+\frac{5}{16}\sin^{-1}\frac{(2x-1)}{\sqrt{5}}+C
Question 44
\int \frac{3x^2}{1+x^6}dxSol :
Given : I=\int \frac{3x^2}{1+x^6}dx
=\int \frac{3x^2}{1+(x^3)^2}dx
Let x3=z then 3x2dx=dz
Now , I=\int \frac{3x^2}{1+(x^3)^2}dx
=\int \frac{dz}{1+z^3}
I=tan-1(z)+C
=tan-1(x3)+C
Question 45
\int \frac{x^2}{1-x^6}dxSol :
Given : I=\int \frac{x^2}{1-x^6}dx
=\int \frac{x^2}{1-(x^3)^2}dx
Let x3=z then 3x2dx=dz⇒x2dx=\frac{dz}{3}
Now , I=\int \frac{dz}{3(1-z^2)}
=\frac{1}{3}\int \frac{1}{1-z^2}dz
=\frac{1}{3}\times \frac{1}{2\times 1}\log \left|\frac{1+z}{1-z}\right|+C
\left[\therefore \int \frac{dx}{a^2-x^2}=\frac{1}{2a} \log \left|\frac{a+x}{a-x}\right|\right]+C
=\frac{1}{6}\log \left|\frac{1+x^3}{1-x^3}\right|+C
Question 46
\int \frac{3x}{1+2x^4}dxSol :
Given : I=\int \frac{3x}{1+2x^4}dx
=3\int \frac{xdx}{1+(\sqrt{2}x^2)^2}
Let z=\sqrt{2}x^2 then dz=\sqrt{2}2xdx⇒\frac{dz}{2\sqrt{2}=xdx}
Now , I=3\int \frac{xdx}{1+(\sqrt{2}x^2)^2}
=3\int \frac{dz}{(1+z^2)2\sqrt{2}}
=\frac{1\times 3}{2\sqrt{2}}\int \frac{1}{1+z^2}dz
=\frac{3}{2\sqrt{2}}\times \frac{1}{1}\tan^{-1}\frac{z}{1}+C
I=\frac{3}{2\sqrt{2}}\tan^{-1}(\sqrt{2}x^2)+C
Question 47
\int \frac{x^2}{1-9x^6}dxSol :
Given : I=\int \frac{x^2}{1-9x^6}dx
Let z=3x^3 then dz=3.3x^2dx=9x^2dx⇒\frac{dz}{9}=x^2dx
Now I=\int \frac{x^2}{1-(3x^3)}dx
=\int \frac{dz}{9(1-z^2)}
=\frac{1}{9}\int \frac{dz}{1-z^2}
\left[\therefore \int \frac{1}{2a}\log \left|\frac{a+x}{a-x}|\right]
=\frac{1}{9}\times \frac{1}{2\times 1} \log \left|\frac{1+z}{1-z}\right|+C
I=\frac{1}{18}\log \left|\frac{1+3x^3}{1-3x^3}\right|+C
Question 48
\int \frac{x^2}{\sqrt{x^6+a^6}}dxSol :
Given :I=\int \frac{x^2}{\sqrt{x^6+a^6}}dx
=\int \frac{x^2}{\sqrt{(x^3)^2+(a^3)^2}}dx
Let z=x^3 then dz=3x^2dx⇒\frac{dz}{3}=x^2dx
Now I=\int \frac{x^2dx}{\sqrt{(x^3)^2+(a^3)^2}}
=\int \frac{dz}{3(\sqrt{z^2+(a^3)^2})}
=\frac{1}{3}\int \frac{dz}{\sqrt{z^2+(a^3)^2}}
=\frac{1}{3}\log \left|z+\sqrt{z^2+(a^3)^2}\right|+C \left[\therefore \int \frac{dx}{\sqrt{x^2+a^2}=\log \left|x+\sqrt{x^2+a^2}\right|}\right]
I=\frac{1}{3}\log \left|x^3+\sqrt{x^6+a^6}\right|+C
Question 49
\int \frac{x}{x^2+x+1}dxSol :
Given : I=\int \frac{x}{x^2+x+1}dx
=\frac{1}{2}\int \frac{2x}{x^2+x+1}dx
=\frac{1}{2}\int \frac{(2x+1-1)}{x^2+x+1}dx
=\frac{1}{2}\int \frac{(2x+1)dx}{x^2+x+1}dx-\frac{1}{2}\int \frac{dx}{x^2+x+1}
=\frac{1}{2}\int \frac{dz}{z}-\frac{1}{2}\int \frac{dx}{(1+\left(x^2+2.x.\frac{1}{2}+\frac{1}{4})-\frac{1}{4}\right)}
=\frac{1}{2}\log |z|-\frac{1}{2}\int \dfrac{dx}{\frac{3}{2}+\left(x+\frac{1}{2}\right)^2}
=\frac{1}{2}\log |x^2+x+1|-\frac{1}{2}\times \dfrac{1}{\frac{\sqrt{3}}{2}}\tan^{-1}\dfrac{\left(x+\frac{1}{2}\right)}{\frac{\sqrt{3}}{2}}+C
=-\frac{1}{\sqrt{3}}\tan^{-1}\dfrac{2x+1}{2\times \frac{\sqrt{3}}{2}}+C+\frac{1}{2}\log |x^2+x+1|+C
=-\frac{1}{\sqrt{3}} \tan^{-1}\frac{(2x+1)}{\sqrt{3}}+\frac{1}{2}\log |x^2+x+1|+C
=\frac{1}{2}\log |x^2+x+1|-\frac{1}{\sqrt{3}}\tan^{-1} \frac{(2x+1)}{\sqrt{3}}+C
Question 50
\int \frac{dx}{x(x^3+8)}Sol :
Given : I=\int \frac{dx}{x(x^3+8)}
∴x=z^{\frac{1}{3}} and ∴dz=\frac{dz}{3.z^{2/3}}
∴x=z^{\frac{2}{3}}
=\int \frac{dz}{3.z^{2/3}.z^{1/3}(z+8)}
=\frac{1}{3}\int \frac{dz}{z(z+8)}
=\frac{1}{3}\int \frac{dz}{z^2+8z}
=\frac{1}{3}\int \frac{dz}{z^2+2.z.4+16-16}
\left[\therefore \int \frac{dx}{x^2-a^2}=\frac{1}{2a}\log \left|\frac{x-a}{x+a}\right|\right]
=\frac{1}{3}\int \frac{dz}{(z+4)^2-(4)^2}
=\frac{1}{3}\times \frac{1}{2\times 4}\log \left|\frac{z+4-4}{z+4+4}\right|+C
=\frac{1}{24}\log \left|\frac{z}{z+8}\right|+C
=\frac{1}{24}\log \left|\frac{x^3}{x^3+8}\right|+C
Question 51
\int \frac{x+2}{\sqrt{x^2+5x+6}}dxSol :
I=\int \frac{x+2}{\sqrt{x^2+5x+6}}dx
x+2=2Ax+5A+B
Equating the coefficient of similar power of x
We get 2A=1 and B+5A=2
∴A=\frac{1}{2} B=2-5A=2-5\times \frac{1}{2} =2-\frac{5}{2}=\frac{4-5}{2}=\frac{-1}{2}
Now , I=\int \frac{x+2}{\sqrt{x^2+5x+6}}dx
=\int \frac{A(2x+5)+B}{\sqrt{x^2+5x+6}}dx
=A\int \frac{(2x+5)}{\sqrt{x^2+5x+6}}dx+B\int \frac{1}{\sqrt{x^2+5x+6}}
=\frac{1}{2}\int \frac{dz}{\sqrt{z}}-\frac{1}{2}\int \frac{1}{\sqrt{\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}\right)-\frac{25}{4}+6}}
=\frac{1}{2}\times 2\sqrt{z}-\frac{1}{2}\int \dfrac{dx}{\sqrt{\left(x+\frac{5}{2}\right)^2-\frac{1}{4}}}
=\sqrt{z}-\frac{1}{2}\int \dfrac{dx}{\sqrt{\left(x+\frac{5}{2}\right)^2-\left(\frac{1}{2}\right)^2}}
=\sqrt{x^2+5x+6}-\frac{1}{2}\log \left|\left(x+\frac{5}{2}\right)+\sqrt{\left(x+\frac{5}{2}\right)^2-\left(\frac{1}{2}\right)^2}\right|+C
\left[\therefore \int \frac{dx}{\sqrt{x^2-a^2}}=\log \left|x+\sqrt{x^2-a^2}\right|+C\right]
I=\sqrt{x^2+5x+6}-\frac{1}{2}\log \left|\left(x+\frac{5}{2}\right)+\sqrt{x^2+5x+6}\right|+C
No comments:
Post a Comment