Exercise 21.1
Question 1
Evaluate the following:
(i) \int_{-2}^{2}|x| d x
Sol :
Put x=0
=\int_{-2}^{0} |x| d x+\int_{0}^{2}|x| d x
=-\int_{-2}^{0} x d x+\int_{0}^{2} x d x
=-\frac{\left[x^{2}\right]_{-2}^{0}}{2}+\frac{\left[x^{2}\right]_{0}^{2}}{2}
=-\frac{1}{2}\left[0-(-2)^{2} \right]+\frac{1}{2}\left[(2)^{2}-0^{2}\right]
=-\frac{1}{2}(-4)=\frac{1}{2} \times 4
=2+2
=4
Diagram to be added
(ii) \int_{1}^{5}|x-4| d x
Sol :
x-4=0⇒x=4
=\int_{1}^{5}|x-4| d x
=\int_{1}^{4}|x-4| d x+\int_{4}^{5}|x-4| d x
=-\int_{1}^{4}(x-4) d x+\int_{4}^{5}(x-4) dx
=-\frac{\left[(x-4)^{2}\right]_{1}^{4}}{2}+\frac{\left[(x-4)^{2}\right]_{4}^{5}}{2}
=-\frac{1}{2}[0-9]+\frac{1}{2}[1-0]
=\frac{9}{2}+\frac{1}{2}
=\frac{10}{2}=5
Diagram to be added
(iii) \int_{0}^{2}|x-3| d x
Sol :
=-\int_{0}^{2}(x-3) dx
=\frac{-\left[(x-3)^{2}\right]_{0}^{2}}{2}
=-\frac{1}{2}[1-9]
=\frac{8}{2}=4
(iv) \int_{-1}^{2}|2 x-1| d x
Sol :
2x-1=0
x=\frac{1}{2}
Diagram to be added
\int_{-1}^{2}|2 x-1| dx=\int_{-1}^{1/2}|2 x-1| d x+\int_{1 / 2}^{2}|2 x-1| d x
=-\int_{-1}^{1 / 2}(2 x-1) d x+\int_{1/2}^{2}(2 x-1) d x
=-\frac{\left[(2 x-1)^{2}\right]_{-1}^{\frac{1}{2}}}{2\times 2}+\frac{\left[(2 x-1)^{2}\right]_{\frac{1}{2}}^{2}}{2 \times 2}
=-\frac{1}{4}[0-3]+\frac{1}{4}[9-0]
=\frac{9}{4}+\frac{9}{4}
=\frac{18}{4}=\frac{9}{2}
(v) \int_{-1}^{1}(|x|+|x-1|) dx
Sol :
=\int_{-1}^{1}|x| d x+\int_{-1}^{1}|x-1| d x
=\int_{-1}^{0}|x| dx+\int_{0}^{1}|x| d x+\int_{-1}^{1}|x-1| d x
=-\int_{-1}^{0} x d x+\int_{0}^{1} x d x-\int_{-1}^{1}(x-1) d x
\left.=-\frac{1}{2}\left[x^{2}\right]_{-1}^{0}+\frac{1}{2}\left[x^{2}\right]_{0}^{1}-\frac{1}{2}(x-1)^{2}\right]_{-1}^{1}
=-\frac{1}{2}[0-1]+\frac{1}{2}[1-0]-\frac{1}{2}[0-4]
=\frac{1}{2}+\frac{1}{2}+2
=1+2
=3
Diagram to be added
Sol :
Diagram to be added
=-\int_{0}^{1}(x-1)dx+\int_{1}^{4}(x-1) dx
Question 2
(i) \int_{-4}^{4}|x+2| d x
Sol :
x+2=0
x=-2
Diagram to be added
\int_{-4}^{4}|x+2| d x=\int_{-4}^{-2}|x+2| dx+\int_{-2}^{4}|x+2| d x
=-\int_{-4}^{-2}(x+2) dx+\int_{-2}^{4}(x+2) d x
=-\frac{1}{2}\left[(x+2)^{2}\right]_{-4}^{-2}+\frac{1}{2}\left[(x+2)^{2}\right]_{-2}^{4}
=-\frac{1}{2}[0-4]+\frac{1}{2}[36-0]
=2+18
=20
Diagram to be added
Sol :
3x-1=0
x=\frac{1}{3}
Diagram to be added
=-\frac{1}{2\times 3}\left[(3 x-1)^{2}\right]_{0}^{1 / 3}+\frac{1}{2\times 3}\left[(3 x-1)^{2}\right]_{1 / 3}^{3}
=-\frac{1}{2\times 3}[0-1]+\frac{1}{2\times 3}[64-0]
=\frac{1}{6}+\frac{64}{6}
=\frac{1+64}{6}=\frac{65}{6}
Diagram to be added
Question 3
(i) Evaluate \int_{1}^{4} f(n) d x where f(x)=|x-1|+|x+2|+|x+3|
Sol :
\left.\int_{1}^{4}(|x-1+| x-2|+| x-3 \mid)\right|dx=\int_{1}^{4}|x-1| d x+\int_{1}^{4}|x-2| d x+\int_{1}^{4}|x-3| d x
=\int_{1}^{4}(x-1) d x+\int_{1}^{2}|x-2| d x+\int_{2}^{4}|x-2| d x+\int_{1}^{3}|x-3| d x+\int_{3}^{4}(x-3) d x
=\frac{1}{2}\left[(x-1)^{2}\right]_{1}^{4}-\int_{1}^{2}(x-2) d x+\int_{2}^{4}(x-2) d x-\int_{1}^{3}(x-3) d x+\int_{2}^{4}(x-3) d x
=\frac{1}{2}[9-0]-\frac{1}{2}\left[(x-2)^{2}\right]_{1}^{2}+\frac{1}{2}(x-2)^{2} \int_{2}^{4}-\frac{1}{2}\left[(x-3)^{2}\right]_{1}^{3}+\frac{1}{2}\left[(x-3)^{2}\right]_{3}^{4}
=\frac{9}{2}-\frac{1}{2}[0-1]+\frac{1}{2}[4-0]-\frac{1}{2}[0-4]+\frac{1}{2}[1-0]
=\frac{9}{2}+\frac{1}{2}+2+2+\frac{1}{2}
=\frac{9}{2}+5=\frac{19}{2}
(ii) \int_{-1}^{2}\left|x^{3}-x\right| d x
Sol :
x3-x=0
x(x2-1)=0⇒x(x+1)(x-1)=0
x=0,±1
Diagram to be added
=\int_{-1}^{0}\left(x^{3}-x\right) d x-\int_{0}^{1}\left(x^{3}-x\right) d x+\int_{1}^{2}\left(x^{3}-x\right) d x
=\left[\frac{x^{4}}{4}-\frac{x^{2}}{2}\right]_{-1}^{0}-\left[\frac{x^{4}}{4}-\frac{x^{2}}{2}\right]_{0}^{1}+\left[\frac{x^{4}}{4}-\frac{x^{2}}{2}\right]_{1}^{2}
=0-\left(\frac{1}{4}-\frac{1}{2}\right)-\left[\frac{1}{4}-\frac{1}{2}-0\right]+\left[4-2-\left(\frac{1}{4}-\frac{1}{2}\right)\right]
=-\frac{1}{4}+\frac{1}{2}-\frac{1}{4}+\frac{1}{2}+2-\frac{1}{4}+\frac{1}{2}
=2+\frac{3}{2}-\frac{3}{4}
=\frac{8+6-3}{4}=\frac{11}{4}
Question 4
\int_{-\pi / 3}^{\pi / 4}|\tan x| dx
Sol :
tanx=0
x=0
Diagram to be added
\int_{-\pi / 4}^{\pi / 4}|\tan x| d x=\int_{-\pi / 4}^{0}|\operatorname{tan}| d x+\int_{0}^{\pi / 4}|\tan | d x
=-\int_{-\pi / 4}^{0} \operatorname{tan} dx+\int_{0}^{\pi / 4} \tan dx
\left.=-[\log |\sec |]_{-\pi / 4}^{0}+(\log \mid \sec x|\right]_{0}^{\pi / 4}
=-[0-\log \sqrt{2}]+[\log \sqrt{2}-0]
=log√2+log√2
=2log√2
=2 \log 2^{1/2}
=1\times \frac{1}{2} \log 2
=log 2
Diagram to be added
Question 5
\int_{0}^{\pi}|\cos x| d x
Sol :
cosx=0
x=\frac{\pi}{2}
Diagram to be added
=\int_{0}^{\pi / 2} \cos d x-\int_{\pi/2}^{\pi} \cos x dx
[\sin x]_{0}^{\pi/2}-[\sin x]_{\pi/2}^{\pi}
=1-0-[0-1]
=2
\int_{0}^{\pi/2} \sin x d x=\int_{0}^{\pi /2} \cos x dx=1
-[\cos x]_{0}^{\pi /{2}}=[\sin x]_{0}^{\pi/ 2}
-[0-1]=1-0
1=1
Diagram to be added
Question 6
\int_{0}^{\pi/2}|\cos x-\sin x| d x
Sol :
cosx-sinx=0
cosx=sinx
tanx=1
x=\frac{\pi}{4}
Diagram to be added
=\int_{0}^{\pi / 4}(\cos x-\sin x) d n-\int_{\pi /4}^{\pi/2}(\cos x-\sin x) d x
=[\sin x+\cos x]_{0}^{\pi / 4}-\left[\sin x +\cos x\right]_{\pi /4}^{\pi /2}
=\frac{1}{\sqrt2}+\frac{1}{\sqrt2}-(0+1)-\left[1+0-\left(\frac{1}{\sqrt2}+\frac{1}{\sqrt2}\right)\right]
=\frac{2}{\sqrt{2}}-1-\left[1-\frac{2}{\sqrt2}\right]
=\frac{2}{\sqrt2}-1-1+\frac{2}{\sqrt{2}}
=2√2-2
=2(\sqrt{2}-1)
Question 7
\int_{-1}^{1} \frac{|x|}{x} d x
Sol :
x=0
Diagram to be added
=-[x]_{-1}^{0}+[x]_{0}^{1}
=-[0-(1)]+[1-0]
=-1+1=0
Question 8
\int_{1}^{4} f(x) dx when f(n)=\left\{\begin{array}{ll}2 x+8 & ; 1 \leq x \leq 2 \\ 6 x & ,2 \leq x \leq 4\end{array}\right.
Sol :
\int_{1}^{4} f(x) d x=\int_{1}^{2} f(x) d x+\int_{2}^{4} f(x) d x
=\int_{1}^{2}(2 x+8) d x+\int_{2}^{4} 6 x d x
=\frac{1}{2\times 2}\left[(2x+8)^{2}\right]_{1}^{2}+\frac{6}{2}\left(x^{2}\right)_{2}^{4}
=\frac{1}{4}[144-100]+3[16-4]
=\frac{1}{4} \times 44 +36=47
Question 10
\int_{-\pi / 4}^{\pi / 4}(\sin |x|+\cos |x| )d x
Sol :
x=0
Diagram to be added
=\int_{-\pi/2}^{0}(-\sin x+\cos x) d x+\int_{0}^{\pi/2}[-\sin x+\cos x] dx
=\int_{-\pi/2}^{0}(-\sin x+\cos ) d x+[-\cos x+\sin x]_{0}^{\pi /2}
=\left[\cos x+\sin x\right]_{-\pi / 2}^{0}+[0+1-(-1+0)]
=[1+0-(0-1)+1+1]
=1+1+1+1=4
Question 11
\int_{0.2}^{3.5}[x] dx
Sol :
=\int_{0.2}^{1}[x] d x+\int_{1}^{2}[x] d x+\int_{2}^{3}[x] dx+\int_{3}^{3 \cdot 5}[x] d x
=\int_{0.2}^{1} 0 d x+\int_{1}^{2} 1 d x+\int_{2}^{3} 2 d x+\int_{3}^{3 \cdot 5} 3 d x
=0+[x]_{1}^{2}+2[x]_{2}^{3}+3[x]_{3}^{3.5}
=2-1+2(3-2)+3(3.5-3)
=1+2+3×0.5
=1+2+1.5
=4.5
Diagram to be added
Question 12
From (1)+(2)
2I=\int_{0}^{\pi/{2}} \cos ^{2} x dx+\int_{0}^{\pi /2} \sin ^{2} x d x
2 I=\int_{0}^{\pi/2}\left(\cos ^{2} x+\sin^2 x\right) d x
2 I=\int_{0}^{\pi/2} d x
2 I=[x]_{0}^{\pi/2}
2 I=\frac{\pi}{2}=0
I=\frac{\pi}{4}
Question 13
\int_{0}^{\pi/2} \frac{\cos x}{\cos x+\sin x} d x
Sol :
Let \int_{0}^{\pi/2} \frac{\cos x}{\cos x+\sin x} d x..(i)
=\int_{0}^{\pi /2} \frac{\sin x}{\sin x+\cos x} dx...(2)
From (1)+(2)
2I=\int_{0}^{\pi /2} \frac{\cos x}{\cos x+\sin x} d x+\int_{0}^{\pi/2} \frac{\sin x}{\sin x+\cos x} d x
2 I=\int_{0}^{\pi /2}\left(\frac{\cos x}{\cos x+\sin x}+\frac{\sin x}{\sin x+\cos x }\right) d x
=\int_{0}^{\pi /{2}} \frac{\cos x+\sin x}{\sin x+\cos x} d x
2 I=[x]_{0}^{\pi /2}
2I=\frac{\pi}{2}-0
I=\frac{\pi}{4}
Question 14
\int_{0}^{\pi /2} \frac{d x}{1+\tan x}
Sol :
Let I=\int_{0}^{\pi /2} \frac{d x}{1+\tan x}
=\int_{0}^{\pi / 2} \frac{d x}{1+\frac{\sin x}{\cos x}}
I=\int_{0}^{\pi/2} \frac{\cos x dx}{\cos x+\sin x}
Question 15
\int_{0}^{\pi /2} \log \tan x dx
Sol :
1=\int_{0}^{\pi / 2} \log \mid \operatorname{tan x}| dx
I=\int_{0}^{\pi/2} \operatorname{log} \tan \left(\frac{\pi}{2}-x\right) dx
I=\int_{0}^{\pi /2} \log \cot x dx..(2)
From (1)+(2)
2 I=\int_{0}^{\pi /2} \log \tan xdx+\int_{0}^{\pi /2} \log \cot xdx
=\int_{0}^{\pi / 2}(\log \tan x+\log \cot x dx
=\int_{0}^{\pi/2} \log \left(\operatorname{\tan x-cot x}\right) d x=0
I=0
(1) \int_{0}^{\pi/{2}} \log \sin x d x
Sol :
Let \int_{0}^{\pi/{2}} \log \sin x d x...(i)
1=\int_{0}^{\pi /2} \log \sin (\frac{\pi}{2}-x) dx
I=\int_{0}^{\pi /2} \log \cos x dx..(2)
By (1)+(2)
2 I=\int_{0}^{\pi /2} \log \sin x dx+\int_{0}^{\pi /2} \log \cos xdx
2 I=\int_{0}^{\pi /2}(\log \sin x+\log \cos x) d x
2 I=\int_{0}^{\pi /2} \log \left(\frac{2 \sin x-\cos x}{2}\right) d x
2I=\int_{0}^{\pi / 2} \log \frac{\operatorname{sin} 2 x}{2}
2 I=\int_{0}^{\pi /2}(\log \sin 2 x-\log 2) dx
2I=\int_{0}^{\pi /2}(\log \sin 2 x)dx-\int_{0}^{\pi/ 2} \log 2 d x..(3)
Let I_{1}=\int_{0}^{\pi /2} \log \sin 2x~dx
Putting 2x=t
2=\frac{d x}{d t}
dx=\frac{dt}{2}
Now
I_{1}=\frac{1}{2} \int_{0}^{\pi} \log \sin t d t
Let f(t)=log sin t
f(π-t)=log sin(π-t)
=log sin t=f(t)
I_{1}=\frac{1}{2} \cdot 2 \int_{0}^{\pi /2} \log \sin t d t
I_{1}=\int_{0}^{\pi / 2} \log \sin t d t..(2)...(4)
I_{1}=\int_{0}^{\pi /2} \log \sin \left(\frac{\pi}{2}-t\right) d t
y=\int_{0}^{\pi /2} \log \cot t dt..(5)
From (4)+(5)
2I_1=\int_{0}^{\pi /2} \log \frac{(2\sin t \cos t)}{2}dt
2 I_{1}=\int_{0}^{\pi /2 } \frac{\sin2t}{2}d t
2 I_{1}=\int_{0}^{\pi /2 } \sin2td t-\int_{0}^{\pi /2}\log2 dt
2 I_{1}=\int_{0}^{2} \log \sin 2x d x-\int_{0}^{\pi /2}\log 2dt
2 I_{1}=I_{1}-\int_{0}^{\pi/{2}} \log {2} dt
I_{1}=-\log 2 \int_{0}^{\pi /{2}} d t
=-\log 2[t]_{0}^{\pi/{2}}
=-\log 2 \frac{\pi}{2}
I_{1}=-\frac{\pi}{2} \log 2
From (3)
2I=-\frac{\pi}{2} \log 2-\log 2[x]_{0}^{\pi /2}
=-\frac{\pi}{2} \log 2-\log 2\left[\frac{\pi}{2}-0\right]
=-\frac{\pi}{2} \log 2-\frac{\pi}{2} \log 2
=-\frac{2\pi}{2}\log {2}
2 I=-\pi \log 2
I=-\frac{\pi}{2} \log 2
(2) \int_{0}^{\pi} \log \cos xdx=-\frac{\pi}{2} \log 2
(3) \int_{0}^{\pi /2} \log \tan x d x=0
(4) \int_{0}^{\pi /2} \log \cot xd x=0
(5) \int_{0}^{\pi / 2} \log \sec x d x=\frac{\pi}{2} \log 2
Sol :
\int_{0}^{\pi /2} \log \frac{1}{\cos x} d x
=\int_{0}^{\pi/{2}} \log (\cos x)^{-1} dx
-\int_{0}^{\pi /2} \log \cos xdx =\frac{\pi }{2} \log 2
(6) \int_{0}^{\pi} \log \operatorname{cosec}xd x=\frac{\pi}{2} \operatorname{log}2
Sol :
=\int_{0}^{\pi/{2}} \log \frac{1}{\sin x} d x
=\int_{0}^{\pi /2}-\log \sin xdx
=\frac{\pi}{2} \log 2
Question 16
\int_{0}^{\pi} \frac{x \tan x}{\sec x \cdot \operatorname{cosec x}} d x
Sol :
Let I=\int_{0}^{\pi} \frac{x \tan x}{\sec x \cdot \operatorname{cosec x}} d x..(1)
I=\int_{0}^{\pi} \frac{(\pi-x) \tan (\pi-x)}{\sec (\pi-x) \operatorname{cosec}(\pi-x)} d x
I=\int_{0}^{\pi} \frac{(\pi-x) \operatorname{tan} x}{\sec x \cdot \operatorname{cosec x}} d x..(2)
From (1)+(2)
2 I=\int_{0}^{\pi} \frac{x\tan x+(\pi-x)+\tan x}{\operatorname{sec} x\cdot \operatorname{cosec x}} d x
2 I=\int_{0}^{\pi} \frac{\operatorname{tan} x(x+\pi-x)}{\sec x \cdot \operatorname{cosec} x} d x
2I=\pi \int_{0}^{\pi} \frac{\operatorname{tan} x}{\operatorname{sec} x \cdot \operatorname{cosec x}} d x
=\pi \int_{0}^{\pi} \frac{\frac{\sin x}{\cos x}}{\frac{1}{\sin x} \cdot \frac{1}{\sin x}} dx
2 t=\pi \int_{0}^{\pi} \sin ^{2} x d x
=\pi \int_{0}^{\pi}\left(\frac{1-\cos 2 x}{2}\right) dx
2 I=\frac{\pi}{2}\left[x-\frac{\sin 2 x}{2}\right]_{0}^{\pi}
I=\frac{\pi}{4}[\pi-0-(0-0)]
I=\frac{\pi ^2}{4}
Question 17
\int_{0}^{\pi /{2}} \frac{\sqrt{\tan x}}{1+\sqrt{\tan x}} d x
Sol :
Let I=\int_{0}^{\pi /{2}} \frac{\sqrt{\tan x}}{1+\sqrt{\tan x}} d x
=\int_{0}^{\pi /2} \frac{\frac{\sqrt{\sin x}}{\sqrt{\cos x}}}{1+\frac{\sqrt{\sin x}}{\sqrt{\cos x}}} d x
I=\int_{0}^{\pi /2} \frac{\sqrt{\sin x}}{\sqrt{\cos x}+\sqrt{\sin x}} d x..(1)
=\int_{0}^{\pi /2} \frac{\sqrt{\sin (\pi / 2-x)}}{\sqrt{\cos (\pi/2-x)}+\sqrt{\sin (\pi /2-x)}} d x
Question 18
(i) \int_{0}^{\pi} x \sin ^{6} x \cos ^{4} x d x=\frac{\pi}{2} \int_{0}^{\pi} \sin ^{6} x \cdot \cos ^{4} x d x
Sol :
L.H.S
=\int_{0}^{\pi} x \sin ^{6} x \cdot \cos ^{4} x d x
I=\int_{0}^{\pi} x \sin ^{6} x \cdot \cot ^{4} x d x..(i)
=\int_{0}^{\pi}(\pi-x) \sin ^{6}(\pi-4) \cdot \cos ^{4}(\pi-4) d x
I=\int_{0}^{\pi}(\pi-x) \sin ^{6} x \cos ^{4} x d x..(2)
From (1)+(2)
2I=\int_{0}^{\pi} \sin ^{6} x \cdot \cos ^{4}(x+\pi-x) d x
2 I=\pi \int_{0}^{\pi} \sin^{6}x \cdot \cos ^{4} x dx
I=\frac{\pi}{2} \int_{0}^{\pi} \sin ^6 x \cdot \cos ^{4}xdx
R.H.S proved
(ii) \int_{0}^{\pi / 2} \log (\tan x+\cot x) d x=\pi \log 2
Sol :
L.H.S
=\int_{0}^{\pi / 2} \log (\tan x+\cot x) d x
=\int_{0}^{\pi /{2}} \log \left(\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}\right) d x
=\int_{0}^{\pi /2} \log \left(\frac{\sin ^{2} x+\cos ^{2}x}{\cos x \sin x}\right) d x
=\int_{0}^{\pi / 2} \log \left(\frac{1 \times 2}{2(\cos x\sin x)}\right) d x
=\int_{0}^{\pi /2} \log \left(\frac{2}{\sin 2x}\right) d x
=\int_{0}^{\pi/{2}}(\log 2-\log \sin x2x) dx
I=\log _{2} \int_{0}^{\pi /2} dx-\int_{0}^{\pi / 2} \log \sin 2x dx
I=\log {2}[x]_{0}^{\pi/2}-I_{1}
I=\frac{\pi}{2} \log 2-I_{1}...(i)
I_{1}=\int_{0}^{\pi /2} \log \sin 2 xdx
Putting 2x=t
2=\frac{d t}{d x}
d x=\frac{d t}{2}
I_{1}=\frac{1}{2} \int_{0}^{\pi} \log \sin t d t
f(t)=log sint
f(π-t)=log sin(π-t)
f(π-t)=log sint
f(π-t)=f(t)
I_{1}=\frac{1}{2}\times 2 \int_{0}^{\pi /2} \log \sin t d t
I_{1}=-\frac{\pi}{2} \log 2 putting in (i)
\left[\int_{0}^{\pi} \log sinx d x=-\frac{\pi}{2} \log 2\right]
I=\frac{\pi}{2}\log+\frac{\pi}{2} \log 2
=\frac{2\pi}{2} \log 2
2=π log2=R.H.S
Question 29
\int_{0}^{\pi /2} \frac{\sin ^{2} x}{1+\sin x \cdot \cos x} d x
Sol :
Let \int_{0}^{\pi /2} \frac{\sin ^{2} x}{1+\sin x \cdot \cos x} d x..(1)
I=\int_{0}^{\pi / 2} \frac{\sin ^{2}\left(\frac{\pi}{2}-x\right)}{1+\sin \left(\frac{\pi}{2}-x\right) \cdot \cos \left(\frac{\pi}{2}-x\right)} dx
1=\int_{0}^{\pi /2} \frac{\cos^2 x}{1+\cos x.\sin x} d x..(2)
From (1)+(2)
2 I=\int_{0}^{\pi/{2}} \frac{\sin ^{2} x+\cos^2 x}{1+\sin x \cos x} d x
2I=\int_{0}^{\pi / 2} \frac{1}{1+\sin x\cos x} dx
2 I=\int_{0}^{\pi / 2} \frac{1}{1+\frac{2 \sin x.\cos x}{2}} dx
2I=\int_{0}^{\pi /2} \frac{2}{2+\sin 2 x} d x
2I=2 \int_{0}^{\pi /2} \frac{1}{2+\frac{2\tan x}{1+\tan^{2} x}} dx
2I=2 \int_{0}^{\pi /2} \frac{\left(1+\tan ^{2} x\right)}{2+2\tan ^2 x+2\tan x} d x
I=\frac{1}{2} \int_{0}^{\pi /2} \frac{\sec ^{2} x}{\left.\tan ^{2} x+\tan x+1\right)} d x
Putting tanx=t
\sec ^{2} x=\frac{dt}{dx}
dx=\frac{dt}{\sec^2 x}
I=\frac{1}{2} \int_{0}^{\infty} \frac{\sec ^{2}x}{t^{2}+t+1} \frac{dt}{\sec^2 x}
I=\frac{1}{2} \int_{0}^{\infty} \frac{d t}{\left(t+\frac{1}{2}\right)^{2}+1-\frac{1}{4}}
=\frac{1}{2} \int_{0}^{\infty}\frac{dt}{(t+\frac{1}{2})^{2}+(\frac{\sqrt{3}}{2})^{2}}
=\frac{1}{2} \cdot \frac{2}{\sqrt{3}}\left[\tan^{-1} \left(\frac{t+\frac{1}{2}}{\frac{\sqrt3}{2}}\right)\right]_{0}^{\infty}
=\frac{1}{\sqrt3}\left[\tan ^{-1}\left(\frac{2 t+1}{\sqrt3}\right)\right]_{0}^{\infty}
=\frac{1}{\sqrt3}[\tan^{-1} \infty-\tan^{-1} \frac{1}{\sqrt3}]
=\frac{1}{\sqrt3}\left[\frac{\pi}{2}-\frac{\pi}{6}\right]
I=\frac{1}{\sqrt3} \frac{\pi}{3}
I=\frac{\pi}{3\sqrt3}
Question 30
\int_{1}^{2} \frac{\sqrt{x}}{\sqrt{3-x}+\sqrt{x}} d x
Sol :
Let \int_{1}^{2} \frac{\sqrt{x}}{\sqrt{3-x}+\sqrt{x}} d x..(1)
=\int_{1}^{2} \frac{\sqrt{3-x}}{\sqrt{3-(3-x)}+\sqrt{3-x}} dx
=\int_{1}^{2} \frac{\sqrt{3-x}}{\sqrt{x}+\sqrt{3-x}} d x..(2)
From (1)+(2)
2 I=\int_{1}^{2} \frac{\sqrt{x}+\sqrt{3-x}}{\sqrt{3-x}+\sqrt{x}} d x
2 I=[x]_{1}^{2}
2I=2-1
I=\frac{1}{2}
Question 36
\int_{-1}^{1} x^{5} e^{x^{8}} d x
Sol :
Let f(x)=x^{5} e^{x^{8}}
f(-x)=(-x)^{5} e^{(-x)^{8}}
=-x^{5} e^{x^{8}}
f(-x)=-f(x)
f(x) is odd function
\int_{-1}^{1} x^{5} e^{x^{8}} d x=0
Question 37
\int_{-\pi}^{\pi} \sin ^{5} x \cos xd x=0
Sol :
Let f(x)=sin5x.cosx
f(-x)=sin5(-x).cos(-x)
=-sin5x.cosx
=-f(x)
Question 38
\int_{-1}^{1} x e^{-x^{2}\tan^2 x} d x=0
Sol :
f(x)=x e^{-x^{2}\operatorname{tan}^{2} x}
f(-x)=-x e^{-(x)^{2}+\tan^{2}(-x)}
=-x e^{-x^{2}+\operatorname{tan}^{2} x}
f(-x)=-f(x)
f(x) is odd
Question 39
\int_{-a}^{a} x f\left(x^{4}\right) d x=0
Sol :
Let f(x)=xf(x4)
f(-x)=xf((-x)4)
=-xf(x4)
f(-x)=-f(x)
f(x) is odd
Question 40
\int_{-2}^{2} f\left(x^{4}\right) d x=2 \int_{0}^{2} f\left(x^{4}\right) d x
Sol :
L.H.S
\int_{-2}^{2} f\left(x^{4}\right) d x
f(x)=f(x4)
f(-x)=f((-x)4)
f(-x)=f(x4)
f(-x)=f(x)
f(x) is even function
L.H.S=\int_{-2}^{2} f\left(x^{4}\right) d x=2 \int_{0}^{2} f\left(x^{4}\right) d x=R.H.S
Question 41
\int_{-1}^{1} e^{|x|} d x
Sol :
x=0
Diagram to be added
\int_{-1}^{1} e^{|x|} d x=\int_{-1}^{0} e^{|x|} d x+\int_{0}^{1} e^{|x|} d x
=\int_{-1}^{0} e^{-x} d x+\int_{0}^{1} e^{x} d x
=-\left[e^{-x}\right]_{-1}^{0}+\left[e^{x}\right]_{0}^{1}
=-[1-e]+e-1
=-1+e+e-1
=2e-2
Question 42
(i) \int_{-1}^{1} \sin ^{5} x \cdot \cos ^{4} x dx=0
(ii) \int_{-1}^{1} x^{17} \cos^4 x d x=0
Question 43
\int_{-\pi / 2}^{\pi / 2} \sin ^{7} x d x=0
Question 44
\int_{-\pi / 2}^{\pi} \sin ^{2} x d x
Sol :
Let f(x)=sin2x
f(-x)=sin2(-x)
=sin2x
f(-x)=f(x); f(x) is even
\int_{-\pi / 2}^{\pi} \sin ^{2} xdx=2 \int_{0}^{\pi/2} \sin ^{2} xdx
=2\int_{0}^{\pi/2} \frac{1-\cos 2 x}{2} dx
=\left[x-\frac{\sin 2 x}{2}\right]_{0}^{\pi/2}
=\frac{\pi}{2}-0-(0-0)
=\frac{\pi}{2}
Question 45
\int_{-\pi /2}^{\pi /2} \sin x d x=0
Question 46
\int_{-1}^{1} \log \left(\frac{3-x}{3+x}\right) d x
Sol :
f(x)=\log \left(\frac{3-x}{3+x}\right)
f(-x)=\log \left(\frac{3+x}{3-x}\right)
f(-x)=-\log \left(\frac{3-x}{3+x}\right)
f(-x)=-f(x)
f(x) is odd
Question 47
\int_{-\pi /2}^{\pi /2} \log \left(\frac{2-\sin x}{2+\sin x}\right) d x
Sol :
Let f(x)=\log \left(\frac{2-\sin x}{2+\sin x }\right) d x
f(-x)=\log \left(\frac{2-\sin (-x)}{2+\sin (-x)}\right)
=\log \left(\frac{2+\sin x}{2-\sin x }\right)
f(-x)=-\log \left(\frac{2-\sin x}{2+\sin x}\right)
f(-x)=-f(x)
Question 48
\int_{-\pi / 4}^{\pi / 4} \sin ^{2} x dx
Sol :
=2 \int_{0}^{\pi / 4} \sin ^{2} x d x
=2 \int_{0}^{\pi/{4}} \frac{1-\cos 2x}{2} d x
=\left[x-\frac{\sin 2 x}{2}\right]_{0}^{\pi / 4}
=\frac{\pi}{4}-\frac{1}{2}-(0)
=\frac{\pi}{4}-\frac{1}{2}
Question 49
\int_{0}^{2\pi} \frac{1}{1+e^{\sin x}} d x
Sol :
=\int_{0}^{2 \pi} \frac{1}{1+e^{\sin x}} d x..(1)
I=\int_{0}^{2 \pi} \frac{1}{1+e^{\sin (2 \pi-x)}} dx
=\int_{0}^{2 \pi} \frac{1}{1+e^{-\sin x}} d x
=\int_{0}^{2 \pi} \frac{1}{1+\frac{1}{e^{\sin x}}} d x
=\int_{0}^{2 \pi} \frac{e^{\sin x}}{e^{\sin x}+1} d x..(2)
From (1)+(2)
2I=\int_{0}^{2 \pi} \frac{1+e^{\sin x}}{1+e^{\sin x}}dx
2 I= [x]_{0}^{2 \pi}
2I=2π-0
2I=2π
I=π
All question not done my problem question is not done
ReplyDelete