Exercise 23.6
Question 1
x(x-y)dy+y2dx=0
Sol :
x(x-y)dy=-y2dx
$\frac{dy}{dx}=\frac{y^2}{x(y-x)}$
f(x,y)$=\frac{dy}{dx}=\frac{y^2}{xy-x^2}$...(i)
f(kx,ky)$=\frac{(ky)^2}{kx.ky}-(kx)^2$
$=\frac{k^2y^2}{k^2xy-k^2x^2}$
$=\frac{k^2y^2}{k^2(xy-x^2)}$
=k0f(x,y)
∴यह एक समघातीय अवकल समीकरण है।
y=vx
Differentiating w.r.t x
$\frac{dy}{dx}=\frac{dv}{dx}.x+v$..(ii)
समीकरण (i) तथा (ii) से,
$\frac{dv}{dx}.x+v=\frac{y^2}{xy-x^2}$
$\frac{dv}{dx}.x+v=\frac{(vx)^2}{x.vx-x^2}$
$\frac{dv}{dx}.x+v=\frac{v^2x^2}{x^2(v-1)}$
$\frac{dv}{dx}.x=\frac{v^2}{v-1}-v$
$\frac{dv}{dx}.x=\frac{v^2-v^2+v}{v-1}$
$\frac{v-1}{v}dv=\frac{dx}{x}$
$\left(1-\frac{1}{v}\right)dv=\frac{dx}{x}$
Integrating both sides
$\int \left(1-\frac{1}{v}\right)dv=\int \frac{dx}{x}$
v-log |v|=log|x|+log k
$\frac{y}{x}=\log \left|\frac{y}{x}\right|+\log |x|+\log k$
$\frac{y}{x}=\log \left|\frac{y}{x}.x.k\right|$
$e^{\frac{y}{x}}=ky$
$y=\frac{1}{k}e^{\frac{y}{x}}$
$y=ce^{\frac{y}{x}}$ जहाँ $c=\frac{1}{k}$
Question 2
x2dy+y(x+y)dx=0
Sol :
x2dy+y(x+y)dx=0
x2dy=-y(x+y)dx
$\dfrac{dy}{dx}=\frac{-y(x+y)}{x^2}$
$\frac{dy}{dx}=-\left(\frac{xy+y^2}{x^2}\right)$...(i)
∴यह एक समघातीय अवकल समीकरण है।
Differentiating w.r.t x
$\frac{dy}{dx}=\frac{dv}{dx}.x+v$..(ii)
समीकरण (i) तथा (ii) से,
$\frac{dv}{dx}.x+v=-\left(\frac{xy+y^2}{x^2}\right)$
$\frac{dv}{dx}.x+v=-\left(\frac{x.vx+(vx)^2}{x^2}\right)$
$\frac{dv}{dx}.x+v=-\left(\frac{x^2(v+v^2)}{x^2}\right)$
$\frac{dv}{dx}.x=-v-v^2-v$
$\frac{dv}{dx}.x=-2v-v^2$
$\frac{dv}{dx}.x=-(v^2+2v$
$\frac{dv}{v^2+2v}=\frac{-dx}{x}$
$\frac{dv}{v(v+2)}=-\frac{dx}{x}$
Integrating both sides
$\int \frac{dv}{v(v+2)}=-\int \frac{dx}{x}$
$\frac{1}{2}\int \left[\frac{1}{v}-\frac{1}{v+2}\right]dv=-\int \frac{dx}{x}$
$\frac{1}{2}\left[\log|v|-\log|v+2|\right]=-\log|x|+\log k$
$\log \frac{v}{v+2}$=-2log|x|+2logk
$\log \dfrac{\frac{y}{x}}{\frac{y}{x}+2}+\log x^2 =\log k^2 $
$\log \dfrac{\frac{y}{x}}{\frac{y+2x}{x}}+\log x^2 =\log k^2$
$\log \frac{x^2 y}{y+2x}=\log k^2 $
$\frac{x^2y}{y+2x}=k^2 $
x2y=k2(y+2x)
x2y=c(y+2x), जहाँ c=k2
Question 3
$x\frac{dy}{dx}=x+y$
Sol :
$\frac{dy}{dx}=\frac{x+y}{x}$..(i)
यह एक समघातीय अवकल समीकरण है।
y=vx ⇒$v=\frac{y}{x}$
Differentiating w.r.t x
$\frac{dy}{dx}=\frac{dv}{dx}.x+v$...(ii)
समीकरण (i) तथा (ii) से
$\frac{dv}{dx}x+v=\frac{x+y}{x}$
$\frac{dv}{dx}.x+v=\frac{x+vx}{x}$
$\frac{dv}{dx}.x+v==\frac{x(1+v)}{x}$
$\frac{dv}{dx}.x+v=1+v-v$
$dv=\frac{dx}{x}$
Integrating both sides
$\int dv=\int \frac{dx}{x}$
v=log x+c
$\frac{y}{x}=\log x+c$
y=xlog|x|+cx
Question 4
$\frac{dy}{dx}=\frac{x+y}{x-y}$
Sol :
$\frac{dy}{dx}=\frac{x+y}{x-y}$..(i)
यह एक समघातीय अवकल समीकरण है।
Differentiating w.r.t x
$\frac{dy}{dx}=\frac{dv}{dx}.x+v$..(ii)
समीकरण (i) तथा (ii) से,
$\frac{dv}{dx}.x+v=\frac{x+y}{x-y}$
$\frac{dv}{dx}.x+v=\frac{x+vx}{x-vx}$
$\frac{dv}{dx}.x+v=\frac{x(1+v)}{x(1-v)}$
$\frac{dv}{dx}.x=\frac{1+v}{1-v}-v$
$\frac{dv}{dx}.x=\frac{1+v-v+v^2}{1-v}$
$\frac{1-v}{1+v^2}dv=\frac{dx}{x}$
Integrating both sides
$\int \frac{1-v}{1+v^2}dv=\int \frac{dx}{x}$
$\int \left(\frac{1}{1+v^2}-\frac{v}{1+v^2}\right)dv=\int \frac{dx}{x}$
$\int \frac{1}{1+v^2}dv-\frac{1}{2}\int \frac{2v}{1+v^2}dv=\int \frac{dv}{x}$
$\tan^{-1}v-\frac{1}{2}\log |1+v^2|=\log x+c$
$\tan^{-1}v=\frac{1}{2}\log |1+v^2|+\log x+c$
$\tan^{-1}\left(\frac{y}{x}\right)=\frac{1}{2}\log \left|1+\frac{y^2}{x^2}\right|+\log x+c$
$\tan^{-1}\left(\frac{y}{x}\right)=\frac{1}{2}\log \left|\frac{x^2+y^2}{x^2}\right|+\log x+c$
$\tan^{-1}\left(\frac{y}{x}\right)=\frac{1}{2}\log \left|x^2+y^2\right| -\frac{1}{2}\log x^2 +\log x+c$
$\tan^{-1}\left(\frac{y}{x}\right)=\frac{1}{2}\log \left|x^2+y^2\right| -\log x^2 +\log x+c$
$\tan^{-1}\left(\frac{y}{x}\right)=\frac{1}{2}\log \left|x^2+y^2\right| +c$
Question 5
$2xy\frac{dy}{dx}=x^2+y^2$
Sol :
$\frac{dy}{dx}=\frac{x^2+y^2}{2xy}$..(i)
यह एक समघातीय अवकल समीकरण है।
Differentiating w.r.t x
$\frac{dy}{dx}=\frac{dv}{dx}.x+v$..(ii)
समीकरण (i) तथा (ii) से,
$\frac{dv}{dx}.x+v=\frac{x^2+y^2}{2xy}$
$\frac{dv}{dx}.x+v=\frac{x^2+(vx)^2}{2x.vx}$
$\frac{dv}{dx}.x+v=\frac{x^2(1+v^2)}{2x^2v}$
$\frac{dv}{dx}.x=\frac{1+v^2}{2v}-v$
$\frac{dv}{dx}.x=\frac{1+v^2-2v^2}{2v}$
$\frac{dv}{dx}.x=\frac{1-v^2}{2v}$
$\frac{2v}{1-v^2}dv=\frac{dx}{x}$
Integrating both sides
$-\int \frac{-2v}{1-v^2}dv=\int \frac{dx}{x}$
-log|1-v2|=log |x|+log k
$-\log \left|1-\frac{y^2}{x^2}\right|=\log |x|+\log k$
$-\log \left|\frac{x^2-y^2}{x^2}\right|=\log |x|+\log k$
-log|x2-y2|+log x2=log x+log k
2log x-log x=log(x2-y2)+log k
log x=log k(x2-y2)
x=k(x2-y2)
Question 6
yex/ydx=(xex/y+y)dy
Sol :
$f(x,y)=\frac{dx}{dy}=\frac{xe^{x/y}+y}{ye^{x/y}}$..(i)
$f(kx,ky)=\frac{kxe^{\frac{kx}{ky}}+ky}{kye^{\frac{kx}{ky}}}$
$=\frac{k(xe^{\frac{x}{y}}+y)}{kye^{x/y}}$
=k0.f(x,y)
यह एक समघातीय अवकल समीकरण है।
Differentiating w.r.t x
$\frac{dx}{dy}=\frac{dv}{dy}.y+v$..(ii)
समीकरण (i) तथा (ii) से,
$\frac{dv}{dy}.y+v=\frac{x.e^{\frac{x}{y}}+y}{ye^{\frac{x}{y}}}$
$\frac{dv}{dy}.y+v=\frac{vye^{\frac{vy}{y}}+y}{ye^{\frac{vy}{y}}}$
$\frac{dv}{dy}.y+v=\frac{y(ve^v+1)}{ye^v}$
$\frac{dv}{dy}.y=\frac{ve^v+1}{e^v}-v$
$\frac{dv}{dy}.y=\frac{ve^v+1-ve^v}{e^v}$
$e^vdv=\frac{dy}{y}$
Integrating both sides
$\int e^v dv=\int \frac{dy}{y}$
ev=log|y|+c
$e^{\frac{x}{y}}=\log y+c$
Question 7
$xy\frac{dy}{dx}=x^2-y^2$
Sol :
$\frac{dy}{dx}=\frac{x^2-y^2}{xy}$..(i)
यह एक समघातीय अवकल समीकरण है।
Differentiating w.r.t x
$\frac{dy}{dx}=\frac{dv}{dx}.x+v$..(ii)
समीकरण (i) तथा (ii) से
$\frac{dv}{dx}.x+v=\frac{x^2-y^2}{xy}$
$\frac{dv}{dx}.x+v=\frac{x^2-(vx)^2}{x.vx}$
$\frac{dv}{dx}.x+v=\frac{x^2(1-v^2)}{x^2 v}$
$\frac{dv}{dx}.x=\frac{1-v^2}{v}-v$
$\frac{dv}{dx}.x=\frac{1-v^2-v^2}{v}-v$
$\frac{dv}{dx}.x=\frac{1-2v^2}{v}$
$\frac{v}{1-2v^2}dv=\frac{dx}{x}$
Integrating both sides
$\frac{1}{-4}\int \frac{-4v}{1-2v^2}dv=\int \frac{dx}{x}$
$-\frac{1}{4}\log |1-2v^2|=\log|x|+\log k$
$\log |1-2\frac{y^2}{x^2}|=-4\log |x|-4\log k$
$\log \left|\frac{x^2-2y^2}{x^2}\right|=-\log |x^4|+\log k^{-4}$
$\log \left|\frac{x^2-2y^2}{x^2}\times x^4\right|=\log k^{-4}$
log|x2(x2-2y2)|=log k-4
x2(x2-2y2)=k-4
x2(x2-2y2)=c, जहाँ c=k-4
Question 8
$\frac{dy}{dx}=\frac{x-y}{x+y}$
Sol :
$\frac{dy}{dx}=\frac{x-y}{x+y}$..(i)
यह एक समघातीय अवकल समीकरण है।
Differentiating w.r.t x
$\frac{dy}{dx}=\frac{dv}{dx}.x+v$..(ii)
समीकरण (i) तथा (ii) से
समीकरण (i) तथा (ii) से,
$\frac{dv}{dx}x+v=\frac{x-y}{x+y}$
$\frac{dv}{dx}x+v=\frac{x-vx}{x+vx}$
$\frac{dv}{dx}x+v=\frac{x(1-v)}{x(1+v)}$
$\frac{dv}{dx}.x=\frac{1-v}{1+v}-v$
$\frac{dv}{dx}.x=\frac{1-v-v-v^2}{1+v}$
$\frac{dv}{dx}.x=\frac{1-2v-v^2}{1+v}$
$\frac{1+v}{1-v^2-2v}dv=\frac{dx}{x}$
Integrating both sides
$\int \frac{1+v}{1-2v-v^2}dv=\int \frac{dx}{x}$
$-\frac{1}{2}\log |1-2v-v^2|=\log |x|+\log k$
$\log \left|1-\frac{2y}{x}-\frac{y^2}{x^2}\right|=-2\log |x|-2\log k$
$\log \left|\frac{x^2-2xy-y^2}{x^2}\right|=-\log |x^2|+\log k^{-2}$
$\log \left|\frac{x^2-2xy-y^2}{x^2}\times x^2\right|=\log \frac{1}{k^2}$
$x^2-2xy-y^2=\frac{1}{k^2}$
$x^2-2xy-y^2=c$ , जहाँ $c=\frac{1}{k^2}$
Question 9
$2xy\frac{dy}{dx}=x^2+3y^2$
Sol :
$\frac{dy}{dx}=\frac{x^2+3y^2}{2xy}$..(i)
यह एक समघातीय अवकल समीकरण है।
y=vx ⇒ $v=\frac{y}{x}$
Differentiating w.r.t x
$\frac{dy}{dx}=\frac{dv}{dx}.x+v$..(ii)
समीकरण (i) तथा (ii) से,
$\frac{dv}{dx}x+v=\frac{x^2+3y^2}{2xy}$
$\frac{dv}{dx}x+v=\frac{x^2+3(vx)^2}{2x.vx}$
$\frac{dv}{dx}x+v=\frac{x^2(1+3v^2)}{2x^2v}$
$\frac{dv}{dx}x=\frac{1+3v^2}{2v}-v$
$\frac{dv}{dx}x=\frac{1+3v^2-2v^2}{2v}-v$
$\frac{dv}{dx}x=\frac{1+v^2}{2v}$
$\frac{2v}{1+v^2}dv=\frac{dx}{x}$
Integrating both sides
$\int \frac{2v}{1+v^2}dv=\int \frac{dx}{x}$
log|1+v2|=log|x|+log c
$\log \left|1+\frac{y^2}{x^2}\right|=\log x+\log c$
$\log \left|\frac{x^2+y^2}{x^2}\right|=\log cx$
$\frac{x^2+y^2}{x^2}=cx$
x2+y2=cx3
Question 10
$\frac{dy}{dx}=\frac{2xy}{x^2-y^2}$
Sol :
$\frac{dy}{dx}=\frac{2xy}{x^2-y^2}$..(i)
यह एक समघातीय अवकल समीकरण है।
y=vx ⇒ $v=\frac{y}{x}$
Differentiating w.r.t x
$\frac{dy}{dx}=\frac{dv}{dx}.x+v$..(ii)
समीकरण (i) तथा (ii) से,
$\frac{dv}{dx}x+v=\frac{2xy}{x^2-y^2}$
$\frac{dv}{dx}x+v=\frac{2x.vx}{x^2-(vx)^2}$
$\frac{dv}{dx}x+v=\frac{2x^2v}{x^2(1-v^2)}$
$\frac{1-v^2}{v+v^3}dv=\frac{dx}{x}$
$\frac{1-v^2}{v(1+v^2)}dv=\frac{dx}{x}$
Integrating both sides
$\int \frac{1-v^2}{v(1+v^2)}dv=\int \frac{dx}{x}$
$\int \left[\frac{1}{v}-\frac{2v}{1+v^2}\right]=\int \frac{dx}{x}$
log|v|-log|1+v2|=log|x|+log k
$\log \frac{v}{1+v^2}=\log x+\log k$
$\log \dfrac{\frac{y}{x}}{1+\frac{y^2}{x^2}}=\log kx$
$\dfrac{\frac{y}{x}}{\frac{x^2+y^2}{x^2}}=kx$
$\frac{xy}{x^2+y^2}=kx$
y=k(x2+y2)
Question 11
$\frac{dy}{dx}+\frac{x-2y}{2x-y}=0$
Sol :
$\frac{dy}{dx}=-\left(\frac{-x-2y}{2x-y}\right)$
$\frac{dy}{dx}=\frac{2y-x}{2x-y}$..(i)
यह एक समघातीय अवकल समीकरण है।
y=vx ⇒ $v=\frac{y}{x}$
समीकरण (i) तथा (ii) से,
$\frac{dv}{dx}.x+v=\frac{2y-x}{2x-y}$
$\frac{dv}{dx}x+v=\frac{2vx-x}{2x-vx}$
$\frac{dv}{dx}.x+v=\frac{x(2v-1)}{x(2-v)}$
$\frac{dv}{dx}.x=\frac{2v-1}{2-v}-v$
$\frac{dv}{dx}.x=\frac{v^2-1}{2-v}$
$\frac{2-v}{v^2-1}dv=\frac{dx}{x}$
Integrating both sides
$\int \frac{2-v}{v^2-1}dv=\int \frac{dx}{x}$
$2\int \frac{dv}{v^2-1^2}-\frac{1}{2}\int \frac{v}{v^2-1}dv=\int \frac{dx}{x}$
$2\times \frac{1}{2\times 1} \log \left|\frac{v-1}{v+1}\right|-\frac{1}{2}\log \left|v^2-1\right|=\log |x|+\log k$
$\log \left|\frac{v-1}{v+1}\right|-\log |\sqrt{v^2-1}|$=log kx
$\log \left|\frac{v-1}{(v+1)\sqrt{(v-1)(v+1)}}\right|=\log kx$
$\log \left|\frac{\sqrt{v-1}}{(v+1)\sqrt{v+1}}\right|=\log kx$
$\dfrac{\sqrt{\frac{y}{x}-1}}{\left(\frac{y}{x}+1\right)\sqrt{\frac{y}{x}+1}}=kx$
दोनो तरफ वर्ग करने पर,
$\dfrac{\frac{y-x}{x}}{\frac{(x+y)^3}{x^3}}=k^2x^2$
$\frac{x^2(y-x)}{(x+y)^3}=k^2 x^2$
y-x=k2(x+y)3
y-x=c(x+y)3, जहाँ c=k2
Question 12
$x^2 \frac{dy}{dx}=x^2+xy+y^2$
Sol :
$\frac{dy}{dx}=\frac{x^2+xy+y^2}{x^2}$..(i)
यह एक समघातीय अवकल समीकरण है।
y=vx ⇒ $v=\frac{y}{x}$
समीकरण (i) तथा (ii) से,
$\frac{dv}{dx}.x+v=\frac{x^2(1+v+v^2)}{x^2}$
$\frac{dv}{dx}.x+v=1+v+v^2$
$\frac{dv}{1+v^2}=\frac{dx}{x}$
Integrating both sides
$\int \frac{dv}{1+v^2}=\int \frac{dx}{x}$
tan-1 v=log|x|+c
$\tan \left(\frac{1}{x}\right)=\log |x|+C$
Question 13
$x\frac{dy}{dx}=y-\sqrt{x^2+y^2}$
Sol :
$\frac{dy}{dx}=\frac{y-\sqrt{x^2y^2}}{x}$..(i)
यह एक समघातीय अवकल समीकरण है।
y=vx ⇒ $v=\frac{y}{x}$
समीकरण (i) तथा (ii) से,
$\frac{dv}{dx}.x+v=\frac{vx-\sqrt{x^2+(vx)^2}}{x}$
$\frac{dv}{dx}.x+v=\frac{vx-x\sqrt{1+v^2}}{x}$
$\frac{dv}{dx}.x+v=\frac{x(v-\sqrt{1+v^2})}{x}$
$\frac{dv}{dx}.x+v=v-\sqrt{1+v^2}$
$\frac{dv}{\sqrt{1+v^2}}=-\frac{dx}{x}$
Integrating both sides
$\int \frac{dv}{\sqrt{1^2+v^2}}=-\int \frac{dx}{x}$
$\log (v+\sqrt{1^2+v^2})=-\log|x|+\log k$
$\log \left(\frac{y}{x}+\sqrt{1+\frac{y^2}{x^2}}\right)+\log x=\log k$
$\log \left(\frac{y}{x}+\sqrt{\frac{x^2+y^2}{x^2}}\right)+\log x=\log k$
$\log \left(\frac{y}{x}+\frac{\sqrt{x^2+y^2}}{x}\right)+\log x=\log k$
$\log \left(\frac{y+\sqrt{x^2+y^2}}{x}\right)+\log x=\log k$
$\log \left(\frac{y+\sqrt{x^2+y^2}}{x}\times x\right)=\log k$
$y+\sqrt{x^2+y^2}=k$
Question 14
$y^2+x^2\frac{dy}{dx}=xy\frac{dy}{dx}$
Sol :
$y^2=xy\frac{dy}{dx}-x^2\frac{dy}{dx}$
$y^2=(xy-x^2)\frac{dy}{dx}$
$\frac{dy}{dx}=\frac{y^2}{xy-x^2}$..(i)
यह एक समघातीय अवकल समीकरण है।
y=vx ⇒ $v=\frac{y}{x}$
समीकरण (i) तथा (ii) से,
$\frac{d v}{d x} \cdot x+v=\frac{(v x)^{2}}{x \cdot v x-x^{2}}$
$\frac{d v}{d x} \cdot x+v=\frac{v^{2} x^{2}}{x^{2}(v-1)}$
$\frac{d v}{d x} \cdot x=\frac{v^{2}}{v-1}-v$
$\frac{d v}{d x} x=\frac{v^{2}-v^{2}+v}{u-1}$
$\frac{v-1}{v} d v=\frac{d x}{x}$
$\left(1-\frac{1}{v}\right) d v=\frac{d x}{x}$
Integrating both sides
$\int\left(1-\frac{1}{v}\right) d v=\int \frac{d x}{x}$
v-log v=log x+c
$\frac{y}{x}-\log \frac{y}{x}=\log x+c$
$\frac{y}{x}=\log \frac{y}{x}+\log x+c$
$\frac{y}{x}=\log \frac{y}{x} x+c$
y=x[log y+C]
Question 15
(x2+)dx+3xydy=0
3xydy=-(x2+y2)dx
$\frac{d y}{d x}=-\frac{\left(x^{2}+y^{2}\right)}{3 x y}$..(i)
यह एक समघातीय अवकल समीकरण है।
y=vx ⇒ $v=\frac{y}{x}$
समीकरण (i) तथा (ii) से,
$\frac{d v}{d x} \cdot x=\frac{-1-4 v^{2}}{3 v}$
$\frac{d v}{d x} \cdot x=-\frac{\left(1+4 v^{2}\right)}{3 v}$
$\frac{3 v}{1+4 v^{2}} d v=-\frac{d x}{x}$
Integrating both sides
$3\int {\frac{v}{1+4 v^{2}}} d v=-\int \frac{dx}{x}$
$\frac{3}{8} \int \frac{8 v}{1+4 v^{2}} d v=-\int \frac{dx}{x}$
$\frac{3}{8} \operatorname{log}\left(1+4 v^{2}\right)$=-log|x|+log k
$\frac{3}{8} \log\left|1+4 \frac{y^{2}}{x^{2}}\right|$=-log|x|+log k
$\log \left| \frac{x^{2}+4 y^{2}}{x^{2}}\right|=-\frac{8}{3} \log |x|+\frac{8}{3} \log k$
$\log \left|\frac{x^{2}+4 y^{2}}{x^{2}}\right|+\log x^{\frac{8}{3}}=\log {k^{\frac{8}{3}}}$
$\log \left(\frac{x^{2}+4 y^{2}}{x^2} \times x^{\frac{8}{3}}\right)=\log k^{\frac{8}{3}}$
$x^{2 / 3}\left(x^{2}+4 y^{2}\right)=k^{8 / 3}$
दोनो तरफ घन करने पर,
x2(x2+4y2)3=k8
x2(x2+4y2)3=c ,जहाँ c=k8
Question 16
x(x-y)dy+y2dx=0
Sol :
(x2-xy)dy=-y2dx
$\frac{d y}{d x}=\frac{y^{2}}{x y-x^{2}}$...(i)
यह एक समघातीय अवकल समीकरण है।
y=vx ⇒ $v=\frac{y}{x}$
समीकरण (i) तथा (ii) से,
$\frac{d v}{d x} \cdot x+v=\frac{v^{2} x^{2}}{x \cdot v x-x^{2}}$
$\frac{d v}{d x} \cdot x+v=\frac{v^{2} x^{2}}{x^{2}(v-1)}$
$\frac{d v}{x} \cdot x=\frac{v^{2}}{v-1}-v$
$\frac{d v}{d x} \cdot x=\frac{v^{2}-v^{2}+v}{v-1}$
$\frac{v-1}{v} d v=\frac{dx}{x}$
$\left(\frac{v}{v}-\frac{1}{v}\right) d v-\frac{dx}{x}$
$\left(1-\frac{1}{v}\right) d v=\frac{dx}{x}$
Integrating both sides
$\int\left(1-\frac{1}{v}\right) d v=\int \frac{d x}{x}$
v-log v=log x+ log k
v=log v+ log x+ log k
$\frac{y}{x}=\log \frac{y}{x}+\log {x}+\log k$
$\frac{y}{x}=\log \frac{y}{x} \cdot x \cdot k$
$\frac{y}{x}=\log ky$
$e^{\frac{y}{x}}=k y$
$\frac{1}{k} e^{y / x}=y$
$c e^{y /x}=y$, जहाँ $c=\frac{1}{k}$
Question 17
$(x-y) \frac{d y}{d x}=x+2 y$
Sol :
$\frac{d y}{d x}=\frac{x+2 y}{x-y}$..(i)
यह एक समघातीय अवकल समीकरण है।
y=vx ⇒ $v=\frac{y}{x}$
समीकरण (i) तथा (ii) से,
$\frac{d v}{d x} \cdot x+v=\frac{x+2 y}{x-y}$
$\frac{d v}{d u} \cdot x+v=\frac{x+2 v x}{x-v x}$
$\frac{d v}{d x} x+v=\frac{x(1+2 v)}{x(1-v)}$
$\frac{d v}{d x} x=\frac{1+2 v}{1-v}-v$
$\frac{d v}{d x} \cdot x=\frac{1+2 v-v+v^{2}}{1-v}$
$\frac{d v}{dx} \cdot x=\frac{v^{2}+v+1}{1-x}$
$\frac{1-v}{v^{2}+v+1} d v=\frac{dx}{x}$
Integrating both side
$\int \frac{1-v}{v^{2}+v+1} d v=\int \frac{d x}{x}$
$1-v=\frac{A \cdot d\left(u^{2}+u+1\right)}{dv}+B$
1-v=A(2v+1)+B
1-v=2AV+A+B
By equating coefficient of v and constant
2A=-1
$A=-\frac{1}{2}$
A+B=1
$-\frac{1}{2}+B=1 \Rightarrow B=\frac{3}{2}$
$\int \frac{A(2 v+1)+B}{v^{2}+v+1} d v=\int \frac{dx}{x}$
$A\int \frac{2 v+1}{v^{2}+v+1} d v+B \int \frac{1}{v^{2}+v+1} d v=\int \frac{d x}{x}$
v2+v+1$=v^{2}+2 \cdot v \cdot \frac{1}{2}+\left(\frac{1}{2}\right)^{2}+1-\left(\frac{1}{2}\right)^{2}$
$=\left(v+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^{2}$
$-\frac{1}{2} \int \frac{2 v+1}{u^{2}+v+1} d v+\frac{3}{2} \int \frac{1}{\left(\frac{\sqrt{3}}{2}\right)^{2}+\left(v+\frac{1}{2}\right)^{2}} d v=\int \frac{d x}{x}$
$-\frac{1}{2} \log\left|v^{2}+v+1\right|+\frac{3}{2} \times \frac{1}{\frac{\sqrt{3}}{2}} \tan ^{-1} \frac{v+\frac{1}{2}}{\frac{\sqrt{3}}{2}}+c=\log |x|$
$\sqrt{3}\tan ^{-1} \frac{\frac{2 v+1}{2}}{\frac{\sqrt{3}}{2}}+c=\frac{1}{2} \log \left|v^{2}+v+1\right|+\log |x|$
$\sqrt{3} \tan ^{-1} \dfrac{\frac{2y}{x}+1}{\sqrt{3}}+C=\frac{1}{2}\left[\log \left|\frac{y^{2}}{x^{2}}+\frac{y}{2}+1\right|+2\log |x| \right]$
$2 \sqrt{3}\tan^{-1} \frac{\frac{2 y+x}{x}}{\sqrt{3}}+c=\log \left| \frac{y^{2}+x y+x^{2}}{x^{2}}\right|+\log|x^2|$
$2 \sqrt{3} \tan ^{-1} \frac{x+2 y}{\sqrt{3} x}+c=\log \left| \frac{y^{2}+x y+x^{2}}{x^{2}} \times x^{2}\right|$
$2 \sqrt{3} \tan ^{-1} \frac{x+2 y}{\sqrt{3} x}+c=\log \left|x^{2}+x y+y^{2}\right|$
Question 18
$x \frac{d y}{d x}=y(\log y-\log x+1)$
Sol :
$\frac{dy}{dx}=\frac{y(\log y-\log x+1)}{x}=F(x, y)$...(i)
$f\left(k_{x}, k_{y}\right)=\frac{ky\left(\log k y-\log kx+1\right)}{k x}$
$=\frac{y\left(\operatorname{log} \frac{k y}{k x}+1\right)}{x}$
$=\frac{y(\log y-\log x+1)}{x}$
=k0 f(x,y)
यह एक समघातीय अवकल समीकरण है।
y=vx ⇒ $v=\frac{y}{x}$
समीकरण (i) तथा (ii) से,
$\frac{d v}{d x} \cdot x+v=\frac{v x(\log v x-\log x+1)}{x}$
$\frac{d v}{d x} \cdot x+v=v\left(\log \frac{v x}{x}+1\right)$
$\frac{d v}{dx} \cdot x+v=v \log v+v$
$\frac{d v}{v \log v}=\frac{d x}{x}$
Integrating both sides
$\int \frac{d v}{v \log v}=\int \frac{d x}{x}$
log|log v|=log |x|+log C
$\log \left|\log \frac{y}{x}\right|=\log | c x|$
$\log \frac{y}{x}=C x$
$\frac{y}{x}=e^{Cx}$
y=xeCx
Question 19
$(x-y) \frac{d y}{d x}=x+3 y$
Sol :
$\frac{d y}{d x}=\frac{x+3 y}{x-y}$..(i)
यह एक समघातीय अवकल समीकरण है।
y=vx ⇒ $v=\frac{y}{x}$
समीकरण (i) तथा (ii) से,
$\frac{d v}{d x} \cdot x=\frac{1+3 v}{1-v}-v$
$\frac{d v}{dx} \cdot x=\frac{1+3 v-v+v^{2}}{1-v}$
$\frac{d v}{d x} \cdot x=\frac{v^{2}+2v+1}{1-v}$
$\frac{1-v}{v^{2}+2v+1} d v=\frac{d x}{x}$
Integrating both sides
$\int \frac{1-v}{v^{2}+2 v+1} d v=\int \frac{d x}{x}$
$1-v=\frac{A \cdot d\left(v^{2}+2 v+1\right)}{d v}+B$
1-v=A(2v+2)+B
Question 20
(x3+3xy2)dx+(y3+3x2y)dy=0
Sol :
(y3+3x2y)dy=-(x3+3xy2)dx
$\frac{d y}{d x}=-\frac{\left(x^{3}+3 x y^{2}\right)}{y^{3}+3 x^{2} y}$...(i)
यह एक समघातीय अवकल समीकरण है।
y=vx ⇒ $v=\frac{y}{x}$
समीकरण (i) तथा (ii) से,
$\frac{d v}{d x} \cdot x+v=\frac{-\left(x^{3}+3 x v^{2} x^{2}\right)}{v^{3} x^{3}+3 x^{2} \cdot v x}$
$\frac{dv}{d x} \cdot x+v=-\frac{x^{3}\left(1+3 v^{2}\right)}{x^{3}\left(v^{3}+3 v\right)}$
$\frac{d v}{d x} \cdot x=-\frac{\left(1+3 v^{2}\right)}{v^{3}+3 v}-v$
$\frac{d v}{dx} \cdot x=\frac{-1-3 v^{2}-v^{4}-3 v^{2}}{u^{3}+3 v}$
$\frac{d v}{dx} \cdot x=\frac{-v^{4}-6 v^{2}-1}{v^{3}+3 v}$
$\frac{v^{3}+3 v}{v^{4}+6 v^{2}+1} d v=-\frac{d x}{x}$
Integrating both sides
$\int \frac{v^{3}+3 v}{v^{4}+6 v^{2}+1} d v=-\int \frac{d x}{x}$
$\frac{1}{4} \int \frac{4 v^{3}+12 v}{v^{4}+6 v^{2}+1} d v=-\int \frac{dx}{x}$
$\frac{1}{4} \log \left|v^{4}+6 v^{2}+1\right|=-\log|x|+\log k$
log |v4+6v2+1|=-4log |x|+4log k
$\log \left|\frac{y^{4}}{x^{4}}+\frac{6 y^{2}}{x^{2}}+1\right|+\operatorname{log}\left|x^{4}\right|=\log k^{4}$
$\log \left|\frac{y^{4}+6 x^{2} y^{2}+x^{4}}{x^{4}}\right|+\log |x^{4}| =\log k^{4}$
$\log \left|\frac{y^{4}+6 x^{2} y^{2}+x^{4}}{x^{4}} \times x^{4}\right| =\log k^{4}$
x4+6x2y2+y4=k4
x4+6x2y2+y4=C, जहाँ C=k4
Question 21
$(x-\sqrt{x y}) d y=y d x$
Sol :
$\frac{d y}{d x}=\frac{y}{x-\sqrt{x y}}$...(i)
यह एक समघातीय अवकल समीकरण है।
y=vx ⇒ $v=\frac{y}{x}$
समीकरण (i) तथा (ii) से,
$\frac{d v}{d x} \cdot x+v=\frac{v x}{x-\sqrt{x \cdot v k}}$
$\frac{dv}{d x} \cdot x+v=\frac{v x}{x(1-\sqrt{v})}$
$\frac{d v}{dx} \cdot x=\frac{v}{1-\sqrt{v}}-v$
$\frac{d v}{d x} \cdot x=\frac{v-v+v \sqrt{v}}{1-\sqrt{v}}$
$\frac{1-\sqrt{v}}{v \sqrt{v}} d v=\frac{d x}{x}$
$\left(\frac{1}{v \sqrt{v}}-\frac{\sqrt{v}}{v\sqrt{v}}\right) d v=\frac{d x}{x}$
$\left(v^{-\frac{3}{2}}-\frac{1}{v}\right) d v=\frac{dx}{x}$
Integrating both sides
$\int\left(v^{\frac{-3}{2}}-\frac{1}{v}\right) d v=\int \frac{d x}{x}$
$\frac{v^{-\frac{1}{2}}}{\frac{-1}{2}}-\log |v|=\log x+\log k$
$-2 v^{-\frac{1}{2}}-\log v=\log k x$
$-\left[2\left(\frac{y}{x}\right)^{-\frac{1}{2}}-\log \frac{y}{x}\right]=\log k x$
$2 \sqrt{\frac{x}{y}}+\log \frac{y}{x}=-\log k x$
$2 \sqrt{\frac{x}{y}}+\log y-\log x=\log (k x)^{-1}$
$2 \sqrt{\frac{x}{y}}+\log y=\log \frac{1}{kx}+\log x$
$2 \sqrt{\frac{x}{y}}+\log y=\log \frac{1}{k}$
$2 \sqrt{\frac{x}{y}}+\log y=C$ , जहाँ $C=\log \frac{1}{k}$
Question 22
$x \frac{d y}{d x}+\frac{y^{2}}{x}=y$
Sol :
x से भाग देने पर
$\frac{d y}{d x}+\frac{y^{2}}{x^{2}}=\frac{y}{x}$
$\frac{d y}{d x}=\frac{y}{x}-\frac{y^{2}}{x^{2}}$...(i)
यह एक समघातीय अवकल समीकरण है।
y=vx ⇒ $v=\frac{y}{x}$
समीकरण (i) तथा (ii) से,
$\frac{d v}{dx} \cdot x+v=\frac{y}{x}-\frac{y^{2}}{x^{2}}$
$\frac{d v}{dx} \cdot v+v=v-v^{2}$
$\frac{d v}{v^{2}}=-\frac{d x}{x}$
Integrating both sides
$\int \frac{d v}{v^{2}}=-\int \frac{d x}{x}$
$-\frac{1}{v}=-\log \cdot|x|+c$
$\log |x|-\frac{1}{\frac{y}{x}}=c$
$\log |x|-\frac{x}{y}=c$
Question 23
$x \frac{d y}{d x}-y=2 \sqrt{y^{2}-x^{2}}$
Sol :
$\frac{d v}{dx}=\frac{2 \sqrt{y^{2}-x^{2}}+y}{x}$...(i)
यह एक समघातीय अवकल समीकरण है।
y=vx ⇒ $v=\frac{y}{x}$
समीकरण (i) तथा (ii) से,
$\frac{d v}{d x} \cdot x+v=\frac{2 \sqrt{y^{2}-x^{2}}+y}{x}$
$\frac{d v}{d x} \cdot x+v=\frac{2 \sqrt{v^{2} x^{2}-x^{2}}+v x}{x}$
$\frac{d v}{d x} \cdot x+v=\cdot \frac{x\left(2 \sqrt{v^{2}-1}+v\right)}{x}$
$\frac{d v}{d x} \cdot x+v=2 \sqrt{{v^{2}-1}}+v$
$\frac{d v}{\sqrt{v^{2}-1}}=2 \frac{d x}{x}$
Integrating both sides
$\int \frac{d v}{\sqrt{v^{2}-1}}=2 \int \frac{d v}{x}$
$\log|v+\sqrt{v^2-1}|$=2log|x|+log C
$\log \left|\frac{y}{x}+\sqrt{\frac{y^{2}}{x^{2}}-1}\right|=\log \left|x^{2}\right|+\log C$
$\log \left|\frac{y}{x}+\sqrt{\frac{y^{2}-x^{2}}{x^{2}}}\right|=\log \left|c x^{2}\right|$
$\frac{y+\sqrt{y^{2}-x^{2}}}{x}=c x^{2}$
$y+\sqrt{y^{2}-x^{2}}=c x^{3}$
Question 24
y2dx+(x2+xy+y2)dy=0
Sol :
(x2+xy+y2)dy=-y2dx
$\frac{d y}{d x}=\frac{-y^{2}}{x^{2}+x y+y^{2}}$...(i)
यह एक समघातीय अवकल समीकरण है।
y=vx ⇒ $v=\frac{y}{x}$
समीकरण (i) तथा (ii) से,
$\frac{d v}{d x} \cdot x+v=\frac{-v^{2} x^{2}}{x^{2}\left(1+v+v^{2}\right)}$
$\frac{d v}{d x} x=\frac{-v^{2}}{1+u+v^{2}}-v$
$\frac{d v}{d x}x=\frac{-v^{2}-v-v^{2}-v^{3}}{1+v+v^{2}}$
$\frac{d v}{d x} \cdot x=\frac{-\left(v^{3}+2 v^{2}+v\right)}{v^{2}+v+1}$
$\frac{v^{2}+v+1}{v\left(v^{2}+2 v+1\right)} d v=-\frac{d x}{x}$
$\frac{v(v+1)+1}{v(v+1)^{2}} d v=-\frac{dx}{x}$
Integrating both sides
$\int \frac{v(v-1)+1}{v(v+1)^{2}} d v=\int \frac{d x}{x}$
$\int\left[\frac{v(v+1)}{v(v+1)^{2}}+\frac{1}{v(v+1)^{2}}\right] d v=-\int \frac{d x}{x}$
$\int\left[\frac{1}{v+1}+\frac{1}{v(v+1)^{2}}\right] d v=-\frac{d x}{x}$
Let,
$\frac{1}{v(v+1)^{2}}=\frac{A}{v}+\frac{B}{(v+1)}+\frac{C}{(v+1)^{2}}$
$\frac{1}{v(v+1)^{2}}=\frac{A(v+1)^{2}+B v(v+1)+C v}{v(v+1)^{2}}$
1=A(v2+2v+1)+B(v2+v)+Cv
A+B=0, 2A+B+C=0, A=1
B=-1,2(1)-1+C=0
C=-1
$\int\left[\frac{1}{v+1}+\frac{1}{v} -\frac{1}{v+1} \frac{-1}{(v+1)^{2}}\right] d v=-\int\frac{d x}{x}$
$\log v+\frac{1}{v+1}=-\log x+c$
$\log \frac{y}{x}+\frac{1}{\frac{y}{x}+1}+\log x=c$
$\log y+\frac{x}{y+x}=c$
Question 25
$\left(x \sin \frac{y}{x}\right) d y=\left(y \sin \frac{y}{x}-x\right) d x$
Sol :
$\frac{d y}{d x}=\frac{y \sin \frac{y}{x}-x}{x \sin \frac{y}{x}}$...(i)
यह एक समघातीय अवकल समीकरण है।
y=vx ⇒ $v=\frac{y}{x}$
समीकरण (i) तथा (ii) से,
$\frac{d v}{dx} \cdot x+v=\frac{v x+\sin \frac{v x}{x}-x}{x \operatorname{sin} \frac{v x}{x}}$
$\frac{d v}{d x}x+v=\frac{x(v \sin v-1)}{x \sin v}$
$\frac{d v}{d v} \cdot x+v=\frac{v \sin v}{\sin v}-\frac{1}{\sin v}$
$\frac{d v}{dx} \cdot x+v=v-\frac{1}{\sin v}$
$-\sin v d v=\frac{d x}{x}$
Integrating both sides
$-\int \sin v d v=\int \frac{dx}{x}$
cos v=log |x|+C
$\cos \frac{y}{x}=\log |x|+c$
Question 26
$\frac{d y}{d x}=\frac{y}{x}+\sin \frac{y}{x}$
Sol :
$\frac{d y}{d x}=\frac{y}{x}+\sin \frac{y}{x}$...(i)
यह एक समघातीय अवकल समीकरण है।
y=vx ⇒ $v=\frac{y}{x}$
समीकरण (i) तथा (ii) से,
$\frac{d v}{d x} \cdot x+v=v+\sin v$
$\frac{d v}{\sin v}=\frac{dx}{x}$
Integrating both sides
$\int \operatorname{cosec} v d v=\int \frac{d x}{x}$
$\log \left|1+\frac{v}{2}\right|=\log | x \mid+\log c$
$\log \left|\frac{y}{2 x}\right|=\log | c x \mid$
$\tan \left(\frac{y}{2x}\right)=C x$
Question 27
$x \frac{d y}{d x}=y-x \cos ^{2}\left(\frac{y}{x}\right)$
Sol :
$\frac{d y}{d x}=\frac{y}{2}-\cos ^{2}\left(\frac{y}{x}\right)$...(i)
यह एक समघातीय अवकल समीकरण है।
y=vx ⇒ $v=\frac{y}{x}$
समीकरण (i) तथा (ii) से,
$\frac{d v}{\cos ^{2} v}=-\frac{dx}{x}$
$\sec ^{2} v d v=-\frac{d x}{x}$
Integrating both sides
$\int \sec ^{2} v d v=-\int \frac{d x}{x}$
tan v=-log|x|+C
$\tan \frac{y}{x}=C-\log |x|$
Question 28
$x \frac{d y}{d x}-y+x \sin \frac{y}{x}=0$
Sol :
$x \frac{d y}{d x}-y+x \sin \frac{y}{x}=0$
$x \frac{d y}{dx}=y-x \sin \frac{y}{x}$
$\frac{d y}{d x}=\frac{y}{x}-\sin \frac{y}{x}$..(i)
यह एक समघातीय अवकल समीकरण है।
y=vx ⇒ $v=\frac{y}{x}$
समीकरण (i) तथा (ii) से,
$\frac{d v}{d x}-x+v=v-\sin v$
$\frac{d v}{\sin v}=-\frac{d x}{x}$
$\operatorname{cosec}v d v=-\frac{d}{x}$
Integrating both sides
$\int \operatorname{cosec} v d v=-\int \frac{d x}{x}$
$\log \left|\tan \frac{v}{2}\right|=-\log | x|+\log | c|$
$\log \left|\tan \left(\frac{y}{2 x}\right)\right|=\log \frac{c}{x}$
$\tan \left(\frac{y}{2 x}\right)=\frac{c}{x}$
$x \tan \left(\frac{y}{2 x}\right)=C$
Question 29
अवकल समीकरण x2dy+y(x+y)dx=0 को हल करें यदि y=1 जब x=1
Sol :
x2dy+y(x+y)dx=0
x2dy=-(xy+y2)dx
$\frac{d y}{d x}=\frac{-\left(x y+y^{2}\right)}{x^{2}}$...(i)
यह एक समघातीय अवकल समीकरण है।
y=vx ⇒ $v=\frac{y}{x}$
समीकरण (i) तथा (ii) से,
$\frac{d v}{d x} \cdot x+v=-\left(\frac{x \cdot v x+v^{2} x^{2}}{x^{2}}\right)$
$\frac{d v}{dx} \cdot x+v=-\frac{x^{2}\left(v+v^{2}\right)}{x^{2}}$
$\frac{d v}{d x} \cdot x=-v-v^{2}-v$
$\frac{d v}{d x} \cdot x=-v^{2}-2 v$
$\frac{d v}{dx} \cdot x=-v(v-2)$
$\frac{d v}{v(v-z)}=-\frac{d x}{x}$
Integrating both sides
$\int \frac{d v}{v(v+2)}=-\int \frac{dx}{x}$
$\frac{1}{2} \int\left(\frac{1}{v}-\frac{1}{v+2}\right) d v=-\int \frac{dx}{x}$
$\frac{1}{2}\left[\log {v}-\log \left| v+2\right|\right]=-\operatorname{log}|x|+\log c$
$\frac{1}{2} \log \frac{v}{v+2}+\log x=\log C$
$\frac{1}{2} \log \left|\frac{\frac{y}{x}}{\frac{y}{x}+2} \right|+\log x=\log C$
$\frac{1}{2}\left[\log \left| \frac{\frac{y}{x}}{\frac{y+2 x}{x}}\right|+\log x^{2}\right]=\log C$
$\log \frac{y}{y+2 x} \times x^{2}=\log C^{2}$
$\frac{x^{2} y}{y+2x}=C^{2}$
y=1 जब x=1
$\frac{1^{2} \cdot 1}{1+2(1)}=C^{2}$
$C^{2}=\frac{1}{3}$
∴अवकल समीकरण का हल
$\frac{x^{2} y}{y +2 x}=\frac{1}{3}$
3x2y=y+2x
Question 30
अवकल समीकरण (x+y)dy+(x-y)dx=0 को हल करें यदि y=1 जब x=1
Sol :(x+y)dy+(x-y)dx=0
(x+y)dy=-(x-y)dx
$\frac{d y}{d x}=\frac{(y-x)}{(x+y)}$...(i)
यह एक समघातीय अवकल समीकरण है।
y=vx ⇒ $v=\frac{y}{x}$
समीकरण (i) तथा (ii) से,
$\frac{d v}{d x} x+v=\frac{v x-x}{x+v x}$
$\frac{d v}{d x} x+v=\frac{x(v-1)}{x(1+v)}$
$\frac{d v}{dx} \cdot x=\frac{v-1}{1+v}-v$
$\frac{d v}{dx} \cdot x=\frac{v-1-v-v^2}{1+v}$
$\frac{d v}{dx} \cdot x=-\frac{\left(1+v^{2}\right)}{1+v}$
$\frac{1+v}{1+v^{2}} d v=-\frac{d x}{x}$
$\frac{1}{1+v^{2}} d v+\frac{v}{1+v^{2}} d v=-\frac{dx}{x}$
Integrating both sides
$\int \frac{1}{1+v^{2}} d v+\frac{1}{2} \int \frac{2 v}{1+v^{2}} d v=-\int \frac{dx}{x}$
$\tan ^{-1} v+\frac{1}{2} \log |1+v^{2}|=-\log x+C$
$\frac{1}{2}\left[2 \tan ^{-1} \frac{y}{x}+\log \left|1+\frac{y^{2}}{x^{2}} \right|\right]=-\log x+C$
$2 \tan ^{-1} \frac{y}{x}+\log y\left|\frac{x^{2}+y^{2}}{x^{2}} \right|+\log y x^{2}=2C$
$2 \tan ^{-1} \frac{y}{x}+\log \left| \frac{x^{2}+y^{2}}{x^{2}} \cdot x^{2}\right|=2C$
y=1 जहाँ x=1
$2 \tan ^{-1} \frac{1}{1}+\log |1^2+1^{2}|=2C$
$2\frac{\pi}{4}+\log 2=2C$
$\frac{\pi}{2}+\log 2=2C$
अवकल समीकरण का हल
$2 \tan ^{-1} \frac{y}{x}+\log|x^2+y^2|=\frac{\pi}{2}+\log 2$
Question 31
अवकल समीकरण (x2-y2)dx+2xydy=0 को हल करें यदि y=1 जब x=1
Sol :
(x2-y2)dx+2xydy=0
2xydy=-(x2-y2)dx
$\frac{d y}{d x}=\frac{y^{2}-x^{2}}{2 x y}$..(i)
यह एक समघातीय अवकल समीकरण है।
y=vx ⇒ $v=\frac{y}{x}$
समीकरण (i) तथा (ii) से,
$\frac{dv}{dx} \cdot x=-\frac{\left(1+v^{2}\right)}{2 v}$
$\frac{2 v}{1+v^{2}} d v=-\frac{d x}{x}$
Integrating both sides
$\int \frac{2 v}{1+v^{2}} d v=-\int \frac{d x}{x}$
log|1+v2|=-log|x|+log|C|
$\log \left|1+\frac{y^{2}}{x^{2}}\right|+\log x=\log C$
$\log \left|\frac{x^{2}+y^{2}}{x^{2}} \times x\right|=\log C$
$\frac{x^{2}+y^{2}}{x}=C$
x2+y2=Cx
y=1 जब x=1
12+12=C(1)
2=C
∴अवकल समीकरण का हल;
x2+y2=2x
Question 32
अवकल समीकरण 2xy+y2-2x2$\frac{dy}{dx}=0$ को हल करें यदि y=2 जब x=1
Sol :
$2 x y+y^{2}=2 x^{2} \frac{d y}{d x}$
$\frac{d y}{d x}=\frac{2 x y+y^{2}}{2 x^{2}}$...(i)
यह एक समघातीय अवकल समीकरण है।
y=vx ⇒ $v=\frac{y}{x}$
समीकरण (i) तथा (ii) से,
$\frac{d v}{d x} \cdot x+v=\frac{2 x \cdot v x+ v^{2} x^{2}}{2 x^{2}}$
$\frac{d v}{d x} \cdot x+v=x^{2} \frac{\left(2 v+v^{2}\right)}{2 x^{2}}$
$\frac{d v}{d x} \cdot x+v=v+\frac{v^{2}}{2}$
$\frac{2}{v^{2}} d v=\frac{d x}{x}$
Integrating both sides
$2 \int \frac{1}{v^{2}} d v=\int \frac{d x}{x}$
$-\frac{2}{v}=\log|x|+c$
$-\frac{2 x}{y}=\log |x|+C$
∵y=2 जब x=1
$\frac{-2(1)}{2}=\log|1|+C$
-1=C
∴अवकल समीकरण का हल
$-\frac{2 x}{y}=\log |x|-1$
$\frac{2 x}{y}=-\log |x|+1$
2x=y(1-log|x|)
Question 33
अवकल समीकरण $\left(x \sin ^{2} \frac{y}{x}-y\right) d x+x d y=0$ को हल करें यदि $y=\frac{\pi}{4}$ जब x=1
Sol :
$\left(x \sin ^{2} \frac{y}{x}-y\right) d x+x d y=0$
$x d y=-\left(x \sin ^{2} \frac{y}{x}-y\right) d x$
$\frac{d y}{dx}=\frac{y-x+\sin^2 \frac{x}{y}}{x}$
$\frac{d y}{dx}=\frac{y}{x}-\sin ^{2} \frac{y}{x}$...(i)
यह एक समघातीय अवकल समीकरण है।
y=vx ⇒ $v=\frac{y}{x}$
समीकरण (i) तथा (ii) से,
$\frac{d v}{d x} x+v=\frac{y}{x}-\sin ^{2} \frac{y}{x}$
$\frac{d v}{d x} \cdot x+v=v-\sin ^{2} v$
$\frac{d v}{\sin^{2} v}=-\frac{d x}{x}$
$-\operatorname{cosec}^{2} v dv=\frac{dx}{x}$
Integrating both sides
$-\int \operatorname{cosec}^{2} v d v=\int \frac{d x}{x}$
cot v=log |x|+C
$\cot \left(\frac{y}{x}\right)=\log |x|+C$
$y=\frac{\pi}{4}$, जब x=1
$\cot \left(\frac{\frac{\pi}{4}}{1}\right)=\log |1|+c$
1=C
∴अवकल समीकरम का हल
$\cot \left(\frac{y}{x}\right)=\log |x|+1$
Question 34
अवकल समीकरण $\frac{d y}{d x}-\frac{y}{x}+\operatorname{cosec} \frac{y}{x}=0$ को हल करें यदि y=0 जब x=1
Sol :
$\frac{d y}{d x}=\frac{y}{x}-\text{cosec} \frac{y}{x}$...(i)
यह एक समघातीय अवकल समीकरण है।
y=vx ⇒ $v=\frac{y}{x}$
समीकरण (i) तथा (ii) से,
$\frac{d y}{dx} \cdot x+v=v-\text{cosec } v$
$\frac{d v}{-\operatorname{cosec} v}=\frac{dx}{x}$
$-\sin v d v=\frac{dx}{x}$
Integrating both sides
$-\int \sin v d v=\int \frac{dv}{x}$
cos v=log|x|+C
$\cos \frac{y}{x}=\log |x|+C$
∵y=0 जब x=1
$\cos \left(\frac{0}{1}\right)=\log |1|+C$
1=C
∴अवकल समीकरण का हल
$\cos \frac{y}{x}=\log |x|+1$
Where is next question
ReplyDelete35th ???
ReplyDelete