Processing math: 100%

KC Sinha Solution Class 11 Chapter 16 कुछ महत्वपूर्ण अनंत श्रेणी (Some Important Infinite series) Exercise 16.5

 Exercise 16.5

निम्नलिखित कोे सिद्ध कीजिए 
(Prove the following)

Question 1

\log _{e} 2-\frac{1}{2}=\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{3 \cdot 4 \cdot 5}+\ldots to \infty

Sol :

\log _{e} 2=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}\cdots \infty

\log_e2=\frac{2-1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\dots \infty

\log _e{2}-\frac{1}{2}=\frac{1}{3}-\frac{1}{6}-\frac{1}{4}+\frac{1}{5}+\frac{1}{15}+\ldots \infty

=\frac{2-1}{6}-\frac{15+12+4}{60}+\dots \infty

=\frac{1}{6}+\frac{1}{60}+\ldots . \infty

\log _{e} 2-\frac{1}{2}=\frac{1}{1.2 .3}+\frac{1}{3.4 .5}+\dots \infty


Question 2

\frac{\log (1+x)}{x}=1-\frac{x}{2}+\frac{x^{2}}{3}-\frac{x^{3}}{4}+\ldots to \infty

Sol :

L.H.S

\frac{\log (1+2)}{x}=\frac{x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\dots ~to~\infty}{x}

=\frac{x\left(1-\frac{x}{2}+\frac{x^{2}}{3}-\frac{x^{3}}{4}+\cdots \infty\right)}{x}

=1-\frac{x}{2}+\frac{x^{2}}{3}-\frac{x^{3}}{4}+\cdots\infty


Question 3

\log \frac{1}{1+x}=-x+\frac{x^{2}}{2}-\frac{x^{3}}{3}+\frac{x^{4}}{4}-\ldots to \infty

Sol :

L.H.S

\log \frac{1}{1+x}=log 1 -log(1+x)

=0-\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots \infty\right)

=-x+\frac{x^{2}}{2}-\frac{x^{3}}{3}+\frac{x^{4}}{4}+\cdots \infty


Question 4

1-\log 2=\frac{1}{2 \cdot 3}+\frac{1}{4 \cdot 5}+\frac{1}{6 \cdot 7}+\ldots to \infty

Sol :

\log 2=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7} \cdots \infty

\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}-\frac{1}{7} \ldots \infty=1-\log 2

\frac{3-2}{2.3}+\frac{5-4}{4.5}+\frac{7-6}{6.7}+\cdots \infty=1-\log 2

\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+\cdots \infty=1-\log 2


Question 7

log(n+1)-log(n-1)=2\left[\frac{1}{n}+\frac{1}{3n^2}+\frac{1}{5n^5}+\dots\right]

Sol :

L.H.S

=log(n+1)-log(n-1)

=\log \frac{n+1}{n-1}

=\log \frac{\frac{n+1}{n}}{\frac{n-1}{n}}

=\log \frac{\left(\frac{n}{n}+\frac{1}{n}\right)}{\left(\frac{n}{n}-\frac{1}{n}\right)}

=\log \left(\frac{1+\frac{1}{n}}{1-\frac{1}{n}}\right)

\left[\log \left(\frac{1+x}{1-x}\right)=2\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{5}\dots \infty \right)\right}

=2\left[\frac{1}{n}+\frac{1}{3 n^{3}}+\frac{1}{5 n^{5}}+\cdots \infty\right]


Question 11

2logx-log(x+1)-log(x-1)=\frac{1}{x^{2}}+\frac{1}{2 x^{4}}+\frac{1}{3 x^{6}}+\ldots

Sol :

L.H.S

=2logx-log(x+1)-log(x-1)

=log x2-[log(x+1)+log(x-1)]

=log x2-log(x+1)(x-1)

=log x2-log(x2-12)

=\log \frac{x^{2}}{x^{2}-1}

=\log \left(\frac{\frac{x^{2}}{x^{2}}}{\frac{x^{2}}{x^{2}}-\frac{1}{x^{2}}}\right)

=\log \left(\frac{1}{1-\frac{1}{x^{2}}}\right)

=\log \left(1-\frac{1}{x^{2}}\right)^{-1} \left[-\log (1-x)=x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\dots \infty\right]

=-\log \left(1-\frac{1}{x^{2}}\right)=\frac{1}{x^{2}}+\left(\frac{1}{x^{2}}\right)^{2} \times \frac{1}{2}+\left(\frac{1}{x^{2}}\right)^{3} \times \frac{1}{3}+\dots\infty

=\frac{1}{x^{2}}+\frac{1}{2 x^{4}}+\frac{1}{3 x^{6}}+\ldots

No comments:

Post a Comment

Contact Form

Name

Email *

Message *