Processing math: 0%

KC Sinha Mathematics Solution Class 10 Chapter 8 त्रिकोणमितीय अनुपात एवम सर्वसमिकाए ( Trigonometry Ratios and Identities ) Exercise 8.2

  Exercise 8.2

TYPE-I : दिए कोणों के त्रिकोणमितीय अनुपातों से सम्बद्ध व्यंजको के मान निकालने पर आधारित प्रश्न:

Question 1

निम्नलिखित के मान ज्ञात कीजिए:
(i) sin 30°+cos 60°
Sol :
=\frac{1}{2}+\frac{1}{2}
=\frac{1+1}{2}=\frac{2}{2}
=1

(ii) sin2 45°+cos2 45°
Sol :
=\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}
=\frac{1}{2}+\frac{1}{2}
=\frac{1+1}{2}
=\frac{2}{2}=1

(iii) sin 30°+cos 60°-tan 45°
Sol :
=\frac{1}{2}+\frac{1}{2}-1
=\frac{1+1-2}{2}=\frac{2-2}{2}
=\frac{0}{2}=0

(iv) \sqrt{1+\tan ^{2} 60^{\circ}}
Sol :
=\sqrt{1+(\sqrt{3})^{2}}=\sqrt{1+3}
=\sqrt{4}=2

(v) tan 60° ×cos 30°
Sol :
=\sqrt{3}=\frac{\sqrt{3}}{2}=\frac{3}{2}

Question 2

यदि θ=45° , तब इनके मान ज्ञात करें।
(i) \tan ^{2} \theta+\frac{1}{\sin ^{2} \theta}
Sol :
\begin{aligned} & =\tan ^{2} 45^{\circ}+\frac{1}{\sin ^{2} 45^{\circ}} \\=& 1^{2}+\frac{1}{\left(\frac{1}{\sqrt{2}}\right)^{2}} \\=& 1^{2}+\frac{1}{\frac{1}{2}} \end{aligned}
=1+2=3

(ii) cos2 θ-sin2 θ
Sol :
=\cos ^{2} 45^{\circ}-\sin ^{2} 45^{\circ}
=\left(\frac{1}{\sqrt{2}}\right)^{2}-\left(\frac{1}{\sqrt{2}}\right)^{2}
=\frac{1}{2}-\frac{1}{2}
=\frac{1-1}{2}
=\frac{0}{2}=0

Question 3

निम्नलिखित के सांख्यिक मान परिकलित करें:
(i) \sin 45^{\circ} \cdot \cos 45^{\circ}-\sin ^{2} 30^{\circ}
=\frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}}-\left(\frac{1}{2}\right)^{2}
=\frac{1}{2}-\frac{1}{4}
=\frac{2-1}{4}=\frac{1}{4}

(ii) \frac{\tan 60^{\circ}}{\sin 60^{\circ}+\cos 60^{\circ}}
Sol :
=\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}+\frac{1}{2}}=\frac{\sqrt{3}}{\frac{\sqrt{3}+1}{2}}=\frac{2 \sqrt{3}}{\sqrt{3}+1}
परिमेयकरण करने पर
=\frac{2 \sqrt{3}}{\sqrt{3}+1} \times \frac{\sqrt{3}-1}{\sqrt{3}-1}
=\frac{(2 \times 3-2 \sqrt{3})}{(\sqrt{3})^{2}-(1)^{2}}=\frac{6-2 \sqrt{3}}{3-1}
=\frac{2(3-\sqrt{3})}{2}=3-\sqrt{3}

(iii) \frac{\tan 60^{\circ}}{\sin 60^{\circ}+\cos 30^{\circ}}
Sol :
=\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}}
=\frac{\sqrt{3}}{\frac{2 \sqrt{3}}{2}}
=\frac{2 \sqrt{3}}{2 \sqrt{3}}=1

(iv) \frac{4}{\sin ^{2} 60^{\circ}}+\frac{3}{\cos ^{2} 60^{\circ}}
Sol :
\frac{4}{\left(\frac{\sqrt{3}}{2}\right)^{2}}+\frac{3}{\left(\frac{1}{2}\right)^{2}}
=\frac{4}{\frac{3}{4}}+\frac{3}{\frac{1}{4}}
=\frac{4 \times 4}{3}+\frac{4 \times 3}{1}=\frac{16}{3}+\frac{12}{1}
=\frac{16+36}{3}=\frac{52}{3}

(v) \sin ^{2} 60^{\circ}-\cos ^{2} 60^{\circ}
Sol :
=\left(\frac{\sqrt{3}}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}=\frac{3}{4}-\frac{1}{4}
=\frac{3-1}{4}=\frac{2}{4}=\frac{1}{2}

(vi) 4 \sin ^{2} 60^{\circ}+3 \tan ^{2} 30^{\circ}-8 \sin 45^{\circ} \cdot \cos 45^{\circ}
Sol :
=4 \times\left(\frac{\sqrt{3}}{2}\right)^{2}+3 \times\left(\frac{1}{\sqrt{3}}\right)^{2}-8\left(\frac{1}{\sqrt{2}}\right) \times \frac{1}{\sqrt{2}}
=4 \times \frac{3}{4}+3 \times \frac{1}{3}-8 \times \frac{1}{2}
=3+1-4=0

(vii) 2 \sin ^{2} 30^{\circ}-3 \cos ^{2} 45^{\circ}+\tan ^{2} 60^{\circ}
Sol :
=2 \times\left(\frac{1}{2}\right)^{2}-3 \times\left(\frac{1}{\sqrt{2}}\right)^{2}+(\sqrt{3})^{2}

=2 \times \frac{1}{4}-3 \times \frac{1}{2}+3

=\frac{1}{2}-\frac{3}{2}+\frac{3}{1}

=\frac{1-3+6}{2}=\frac{7-3}{2}

=\frac{4}{2}=2


(viii) \sin 90^{\circ}+\cos 0^{\circ}+\sin 30^{\circ}+\cos 60^{\circ}
Sol :
=1+1+\frac{1}{2}+\frac{1}{2}
=\frac{2+2+1+1}{2}=\frac{6}{2}
=3

(ix) \sin 90^{\circ}+\cos 0^{\circ}+\tan 0^{\circ}+\tan 45^{\circ}
Sol :
=1+1+0+1=3

(x) \cos ^{2} 0^{\circ}+\tan ^{2} \frac{\pi}{4}+\sin ^{2} \frac{\pi}{4} जहाँ, \pi=180^{\circ}
Sol :
=\cos ^{2} 0^{\circ}+\tan ^{2} \frac{180^{\circ}}{4}+\sin ^{2} \frac{180^{\circ}}{4}
=\cos ^{2} 0^{\circ}+\tan ^{2} 45^{\circ}+\sin ^{2} 45^{\circ}
=(1)^{2}+(1)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}
=1+1+\frac{1}{2}=\frac{2+2+1}{2}=\frac{5}{2}

(xi) \frac{\cos 60^{\circ}}{\sin ^{2} 45^{\circ}}-3 \cot 45^{\circ}+2 \sin 90^{\circ}
Sol :
\frac{\frac{1}{2}}{\left(\frac{1}{\sqrt{2}}\right)^{2}}-3 \times 1+2 \times 1
\frac{\frac{1}{2}}{\frac{1}{2}}=-3+2
=1-3+3=3+3=0

(xii) \frac{4}{\tan ^{2} 60^{\circ}}+\frac{1}{\cos ^{2} 30^{\circ}}-\sin ^{2} 45^{\circ}
Sol :
\frac{4}{(\sqrt{3})^{2}}+\frac{2}{\left(\frac{\sqrt{3}}{2}\right)^{2}}-\frac{1}{2}
=\frac{8+8-3}{6}=\frac{16-3}{6}=\frac{13}{6}

(xiii) \cos 60^{\circ} \cdot \cos 30^{\circ}-\sin 60^{\circ} \cdot \sin 30^{\circ}
Sol :

=\frac{1}{2} \times \frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2} \times \frac{1}{2}

=\frac{\sqrt{3}}{4}-\frac{\sqrt{3}}{4}

=\frac{\sqrt{3}-\sqrt{3}}{4}

=\frac{0}{4}=0


(xiv) \frac{4\left(\sin ^{2} 60^{\circ}-\cos ^{2} 45^{\circ}\right)}{\tan ^{2} 30^{\circ}+\cos ^{2} 90^{\circ}}
Sol :
=\frac{4 \times\left(\left(\frac{\sqrt{3}}{2}\right)^{2}-\left(\frac{1}{\sqrt{2}}\right)^{2}\right)}{\left(\frac{1}{\sqrt{3}}\right)^{2}+(0)^{2}}=\frac{4 \times\left(\frac{3}{4}-\frac{1}{2}\right)}{\frac{1}{3}}
=12\left(\frac{3-2}{4}\right)=12\left(\frac{1}{4}\right)
=3

Question 4

(i) \sin 30^{\circ} \cdot \cos 45^{\circ}+\cos 30^{\circ} \cdot \sin 45^{\circ}
Sol :

=\frac{1}{2} \times \frac{1}{\sqrt{2}}+\times \frac{\sqrt{3}}{2} \times \frac{1}{2}

=\frac{1}{2 \sqrt{2}}+\frac{\sqrt{3}}{2 \sqrt{2}}

=\frac{1+\sqrt{3}}{2 \sqrt{2}}=\frac{\sqrt{3}+1}{2 \sqrt{2}}



(ii) \operatorname{cosec}^{2} 30^{\circ} \cdot \tan ^{2} 45^{\circ}-\sec ^{2} 60^{\circ}
Sol :
(2)^{2} \times(1)^{2}-(2)^{2}
=4×1-4
=4-4=0


(iii) 2 \sin ^{2} 30^{\circ} \cdot \tan 60^{\circ}-3 \cos ^{2} 60^{\circ} \cdot \sec ^{2} 30^{\circ}
Sol :

=2 \times\left(\frac{1}{2}\right)^{2} \times \sqrt{3}-3 \times\left(\frac{1}{2}\right)^{2} \times\left(\frac{2}{\sqrt{3}}\right)^{2}

=2 \times \frac{1}{4} \times \sqrt{3}-3 \times \frac{1}{4} \times \frac{4}{3}

=\frac{\sqrt{3}}{2}-\frac{1}{1}
=\frac{\sqrt{3}-2}{2}


(iv) \tan 60^{\circ} \cdot \operatorname{cosec}^{2} 45^{\circ}+\sec ^{2} 60^{\circ} \cdot \tan 45^{\circ}
Sol :
\begin{aligned} & =\sqrt{3} \times(\sqrt{2})^{2}+(2)^{2} \times 1 \\ & =\sqrt{3} \times 2+4 \\=& 2 \sqrt{3}+4 \\=& 2(2+\sqrt{3}) \end{aligned}


(v) \tan 30^{\circ} \cdot \sec 45^{\circ}+\tan 60^{\circ} \cdot \sec 30^{\circ}
Sol :

=\frac{1}{\sqrt{3}} \times \sqrt{2}+\sqrt{3} \times \frac{2}{\sqrt{3}}

=\frac{\sqrt{2}}{\sqrt{3}}+\frac{2}{1}

=\frac{\sqrt{2}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}+2

=\frac{\sqrt{6}}{3}+2



(vi) \cos 30^{\circ} \cdot \cos 45^{\circ}-\sin 30^{\circ} \cdot \sin 45^{\circ}
Sol :
=\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}}-\frac{1}{2} \times \frac{1}{\sqrt{2}}
=\frac{\sqrt{3}}{2 \sqrt{2}}-\frac{1}{2 \sqrt{2}}=\frac{\sqrt{3}-1}{2 \sqrt{2}}
परिमेयकरण करने पर
\frac{\sqrt{3}-1}{2 \sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}
=\frac{\sqrt{2}(\sqrt{3}-1)}{4}


(vii) \frac{4}{3} \tan ^{2} 30^{\circ}+\sin ^{2} 60^{\circ}-3 \cos ^{2} 60^{\circ}+\frac{3}{4} \tan ^{2} 60^{\circ}-2 \tan ^{2} 45^{\circ}
Sol :
=\frac{4}{3} \times\left(\frac{1}{\sqrt{3}}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}-3 \times\left(\frac{1}{2}\right)^{2}+\frac{3}{4} \times(\sqrt{2})^{2}-2 \times(1)^{2}
=\frac{4}{3} \times \frac{1}{3}+\frac{3}{4}-\frac{3}{4}+\frac{3}{4} \times 3-2
=\frac{4}{9}+\frac{3}{4}-\frac{3}{4}+\frac{9}{4}-\frac{2}{1}
=\frac{4}{9}+\frac{9}{4}-\frac{2}{1}
=\frac{16+81-72}{36}=\frac{97-72}{36}=\frac{25}{36}


(viii) \frac{\tan ^{2} 60^{\circ}+4 \cos ^{2} 45^{\circ}+3 \sec ^{2} 30^{\circ}+5 \cos ^{2} 90^{\circ}}{\operatorname{cosec} 30^{\circ}+\sec 60^{\circ}-\cot ^{2} 30^{\circ}}
Sol :
=\frac{(\sqrt{3})^{2}+4 \times\left(\frac{1}{\sqrt{2}}\right)^{2}+3 \times\left(\frac{2}{\sqrt{3}}\right)^{2}+5 \times(0)^{2}}{2+2-(\sqrt{3})^{2}}
=\frac{3+4 \times \frac{1}{2}+3 \times \frac{4}{3}+0}{4-3}
=\frac{3+2+4}{1}
=9


(ix) \frac{5 \sin ^{2} 30^{\circ}+\cos ^{2} 45^{\circ}-4 \tan ^{2} 30^{\circ}}{2 \sin 30^{\circ} \cdot \cos 30^{\circ}+\tan 45^{\circ}}
Sol :
=\frac{5 \times\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}-4 \times\left(\frac{1}{\sqrt{3}}\right)^{2}}{2 \times \frac{1}{2} \times \frac{\sqrt{3}}{2}+1}
=\frac{5 \times \frac{1}{4}+\frac{1}{2}-4 \times \frac{1}{3}}{\frac{\sqrt{3}}{2}+\frac{1}{1}}
=\frac{\frac{5}{4}+\frac{1}{2}-\frac{4}{3}}{\frac{\sqrt{3}+2}{2}}
=\frac{\frac{15+6-16}{12}}{\frac{\sqrt{3}+2}{2^{2}}}
=\frac{\frac{21-16}{6}}{\sqrt{3}+2}
=\frac{\frac{5}{6}}{\sqrt{3}+2}


Question 5

निम्नलिखित को सिद्ध कीजिए :

(i) \frac{(1-\cos B)(1+\cos B)}{(1-\sin B)(1+\sin B)}=\frac{1}{3} जब B=30^{\circ}
Sol :
LHS
=\frac{\left(1^{2}-\cos ^{2} B\right)}{\left(1^{2}-\sin ^{2} B\right)}=\frac{1-\cos ^{2} B}{1-\sin ^{2} B}
=\frac{\sin ^{2} B}{\cos ^{2} B}=\frac{\sin ^{2} 30^{\circ}}{\cos ^{2} 30^{\circ}}
\frac{\left(\frac{1}{2}\right)^{2}}{\left(\frac{\sqrt{3}}{2}\right)^{2}}=\frac{\frac{1}{4}}{\frac{3}{4}}=\frac{1}{3}
LHS=RHS


(ii) \frac{(1-\cos \alpha)(1+\cos \alpha)}{(1-\sin \alpha)(1+\sin \alpha)}=3 जब \alpha=60^{\circ}
Sol :
LHS

=\frac{\left(1^{2}-\cos ^{2} \alpha\right)}{\left(1^{2}-\sin ^{2} \alpha\right)}=\frac{1-\cos ^{2} \alpha}{1-\sin ^{2} \alpha}

=\frac{\sin ^{2} \alpha}{\cos ^{2} \alpha}=\frac{\sin ^{2} 60^{\circ}}{\cos ^{2} 60^{\circ}}

=\frac{\left(\frac{\sqrt{3}}{2}\right)^{2}}{\left(\frac{1}{2}\right)^{2}}=\frac{\frac{3}{4}}{\frac{4}{4}}=3


LHS=RHS


(iii) \cos (A-B)=\cos A \cdot \cos B+\sin A \cdot \sin B यदि A=B=60^{\circ}
Sol :
LHS
cos(60°-60°)=cos60°×cos60°+sin60°×sin60°

\cos 0^{\circ}=\frac{1}{2} \times \frac{1}{2}+\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}

1=\frac{1}{4}+\frac{3}{4}

1=\frac{1+3}{4}=\frac{4}{4}

1=1 proved



(iv) \left.4  \sin ^{4} 30^{\circ}+\cos ^{4} 60^{\circ}\right)-3\left(\cos ^{2} 45^{\circ}-\sin ^{2} 90^{\circ}\right)=2
Sol :
LHS
4\left[\left(\frac{1}{2}\right)^{4}+\left(\frac{1}{2}\right)^{4}\right]-3\left[\left(\frac{1}{\sqrt{2}}\right)^{2}+(1)^{2}\right]=2
4\left[\frac{1}{16}+\frac{1}{16}\right]-3\left[\frac{1}{2}+1\right]=2
4\left[\frac{1+1}{16}\right]-3\left[\frac{1-2}{2}\right]=2
4 \times \frac{2}{16}+\frac{3}{2}=2
\frac{2+6}{4}=2
\frac{8}{4}=2
2=2 proved


(v) \sin 90^{\circ}=2 \sin 45^{\circ} \cdot \cos 45^{\circ}
Sol :
LHS
1=2 \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}}
1=2 \times \frac{1}{\frac{2}{2}}
1=1
Proved


(vi) \cos 60^{\circ}=2 \cos ^{2} 30^{\circ}-1=1-2 \sin ^{2} 30^{\circ}
Sol :
\frac{1}{2}=2 \times\left(\frac{\sqrt{3}}{2}\right)^{2}-1=1-2\left(\frac{1}{2}\right)^{2}
\frac{1}{2}=2 \times \frac{3}{4}-1=1-2 \frac{1}{4}
\frac{1}{2}=\frac{3}{2}-1=1-\frac{1}{2}
\frac{1}{2}=\frac{3-2}{2}=\frac{2-1}{2}
\frac{1}{2}=\frac{1}{2}=\frac{1}{2}


(vii) \cos 90^{\circ}=1-2 \sin ^{2} 45^{\circ}=2 \cos ^{2} 45^{\circ}-1
Sol :
\begin{aligned} 0 &=1-2 \times\left(\frac{1}{\sqrt{2}}\right)^{2}=2\left(\frac{1}{\sqrt{2}}\right)^{2}-1 \\ 0 &=1-2 \times \frac{3}{2}=2 \times \frac{1}{2} \\ 0 &=\frac{3}{2}-1=1-\frac{1}{2} \\ 0 &=\frac{1-1}{1}=\frac{1-1}{1} \end{aligned}
0=0=0


(viii) \sin 30^{\circ} \cdot \cos 60^{\circ}+\cos 30^{\circ} \cdot \sin 60^{\circ}=\sin 90^{\circ}
Sol :
LHS
\frac{1}{2} \times \frac{1}{2}+\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}=1
\frac{1}{4} \times \frac{3}{4}=1
\frac{1+3}{4}=1
\frac{4}{4}=1
1=1 proved


(ix) \cos 60^{\circ} \cdot \cos 30^{\circ}-\sin 60^{\circ} \cdot \sin 30^{\circ}=\cos 90^{\circ}
Sol :
\frac{1}{2} \times \frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2} \times \frac{1}{2}=0
0=0
\frac{\sqrt{3}}{4}-\frac{\sqrt{3}}{4}=0
0=0 proved


(x) \cos 60^{\circ}=\frac{1-\tan ^{2} 30^{\circ}}{1+\tan ^{2} 30^{\circ}}
Sol :
LHS
\frac{1}{2}=\frac{1-\left(\frac{1}{\sqrt{3}}\right)^{2}}{1+\left(\frac{1}{\sqrt{3}}\right)^{2}}
\frac{1}{2}=\frac{1-\frac{1}{3}}{1+\frac{1}{3}}=\frac{1}{2}=\frac{\frac{3-1}{\frac{3}{3+1}}}{\frac{3}{3}}
\frac{1}{2}=\frac{3-1}{3+1}=\frac{1}{2}=\frac{2}{4}
\frac{1}{2}=\frac{1}{2}=RHS


(xi) \frac{\tan 60^{\circ}-\tan 30^{\circ}}{1+\tan 60^{\circ} \cdot \tan 30^{\circ}}=\tan 30^{\circ}
Sol :
LHS
\frac{\sqrt{3}-\frac{1}{\sqrt{3}}}{1+\sqrt{3} \times \frac{1}{\sqrt{3}}}=\frac{1}{\sqrt{3}}
\frac{\frac{3-1}{\sqrt{3}}}{1+1}=\frac{1}{\sqrt{3}}
\frac{\frac{2}{\sqrt{3}}}{2}=\frac{1}{\sqrt{3}}
\frac{1}{\sqrt{3}}=\frac{1}{\sqrt{3}}


(xii) \frac{1-\tan 30^{\circ}}{1+\tan 30^{\circ}}=\frac{1-\sin 60^{\circ}}{\cos 60^{\circ}}
Sol :
\frac{1-\frac{1}{\sqrt{3}}}{1+\frac{1}{\sqrt{3}}}=\frac{1-\frac{\sqrt{3}}{2}}{\frac{1}{2}}
\frac{\frac{\sqrt{3}-1}{\sqrt{3}}}{\frac{\sqrt{3}+1}{\sqrt{3}}}=\frac{\frac{2-\sqrt{3}}{2}}{\frac{1}{2}}
\frac{\sqrt{3}-1}{\sqrt{3}+1}=2-\sqrt{3}

परिमेयकरण करने पर
\frac{\sqrt{3}-1}{\sqrt{3}+1} \times \frac{\sqrt{3}-1}{\sqrt{3}-1}=2-\sqrt{3}
\frac{(\sqrt{3}-1)^{2}}{(\sqrt{3})^{2}-(1)^{2}}=2-\sqrt{3}
\frac{(\sqrt{3})^{2}-(1)^{2}-2 \times \sqrt{3} \times 1}{3-1}=2-\sqrt{3}
\frac{3+1-2 \sqrt{3}}{2}=2-\sqrt{3}

\frac{4-2 \sqrt{3}}{2}=2-\sqrt{3}

2 \times \frac{(2-\sqrt{3})}{{2}}=2-\sqrt{3}

2-\sqrt{3}=2-\sqrt{3}= proved



(xiii) \frac{\sin 60^{\circ}+\cos 30^{\circ}}{\sin 30^{\circ}+\cos 60^{\circ}+1}=\cos 30^{\circ}
Sol :
LHS
\frac{\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}}{\frac{1}{2}+\frac{1}{2}+1}=\frac{\sqrt{3}}{2}
\frac{\frac{\sqrt{3}+\sqrt{3}}{2}}{\frac{1+1+2}{2}}=\frac{\sqrt{3}}{2}
\frac{\frac{2 \sqrt{3}}{2}}{\frac{4}{2}}=\frac{\sqrt{3}}{2}
\frac{2 \sqrt{3}}{4}=\frac{\sqrt{3}}{2}
2 \times \frac{(\sqrt{3})}{4}=\frac{\sqrt{3}}{2}
\frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{2}= R.H.S


(xiv) \sin 60^{\circ}=2 \sin 30^{\circ} \cdot \cos 30^{\circ}=\frac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}
Sol :
\frac{\sqrt{3}}{2}=2 \times \frac{1}{2} \times \frac{\sqrt{3}}{2}
=\frac{2 \times \frac{1}{\sqrt{3}}}{1+\left(\frac{1}{\sqrt{3}}\right)^{2}}
\frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{2}=\frac{\frac{2}{\sqrt{3}}}{1+\frac{1}{3}}
\frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{2}=\frac{\frac{2}{\sqrt{3}}}{\frac{3+1}{3}}
\frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{2}=\frac{\frac{2}{\sqrt{3}}}{\frac{4}{3}}
\frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{2}


Type II: किसी सर्वसमिका को सत्यापित करने पर आधारित प्रश्न:

Question 6

यदि \mathrm{A}=60^{\circ} और \mathrm{B}=30^{\circ}, तब निम्नलिखित को सत्यापित करें :
(i) \cos (A+B)=\cos A \cos B-\sin A \sin B
Sol :
LHS
cos(60°+30°)=cos60°×cos30°-sin60°×sin30°
\cos 90^{\circ}=\frac{1}{2} \times \frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2} \times \frac{1}{2}
0=\frac{\sqrt{3}}{4}-\frac{\sqrt{3}}{4}
0=0 RHS


(ii) \sin (A-B)=\sin A \cos B-\cos A \sin B
Sol :
LHS
sin(60°-30°)=sin60°×cos30°-cos60°×sin30°
\sin 30^{\circ}=\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}-\frac{1}{2} \times \frac{1}{2}
\frac{1}{2}=\frac{3}{4}-\frac{1}{4}
\frac{1}{2}=\frac{3-1}{4}
\frac{1}{2}=\frac{2}{4}
\frac{1}{2}=\frac{1}{2}= proved


(iii) \tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}
Sol :
LHS
\tan \left(60^{\circ}-30^{\circ}\right)=\frac{\tan 60^{\circ}-\tan 30^{\circ}}{1+\tan 60^{\circ} \times \tan 30^{\circ}}
\tan 30^{\circ}=\frac{\sqrt{3}-\frac{1}{\sqrt{3}}}{1+\sqrt{3} \times \frac{1}{\sqrt{3}}}
\frac{1}{\sqrt{3}}=\frac{\frac{3-1}{\sqrt{3}}}{1+1}
\frac{1}{\sqrt{3}}=\frac{\frac{2}{\sqrt{3}}}{\frac{1}{2}}
\frac{1}{\sqrt{3}}=\frac{1}{\sqrt{3}} proved

Question 7

यदि A=30^{\circ}, तब निम्नलिखित को सत्यापित करें :
(i) sin2A=2sinAcosA
Sol :
LHS

\sin 2\left(30^{\circ}\right)=2 \sin 30^{\circ} \times \cos 30^{\circ}

\sin 60^{\circ}=2 \times \frac{1}{2} \times \frac{\sqrt{3}}{2}

\frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{2} proved



(ii) \cos 2 A=1-2 \sin ^{2} A=2 \cos ^{2} A-1
Sol :
\cos 2\left(30^{\circ}\right)=1-2 \sin ^{2} 30^{\circ}=2 \cos ^{2} 30^{\circ}-1
\cos 60^{\circ}=1-2 \times\left(\frac{1}{2}\right)^{2}=2 \times\left(\frac{\sqrt{3}}{2}\right)^{2}-1
\frac{1}{2}=1-2 \times \frac{1}{4}=2 \times \frac{3}{4}-1
\frac{1}{2}=1-\frac{1}{2}=\frac{3}{2}-1
\frac{1}{2}=\frac{2-1}{2}=\frac{3-2}{2}
\frac{1}{2}=\frac{1}{2}=\frac{1}{2}


Question 8

यदि \theta=30^{\circ}, तब निम्न को सत्यापित करें :
(i) \sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta
Sol:
\sin 3\left(30^{\circ}\right)=3 \sin \left(30^{\circ}\right)-4 \sin ^{3}\left(30^{\circ}\right)
\sin 90^{\circ}=3 \sin 30^{\circ}-4 \sin ^{3} 30^{\circ}
1=3 \times \frac{1}{2}-4 \times\left(\frac{1}{2}\right)^{3}
1=\frac{3}{2}-4 \times \frac{1}{8}
1=\frac{3}{2}-\frac{1}{2}
1=\frac{3-1}{2}
1=\frac{2}{2}
1=1 proved


(ii) \cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta
Sol:
\cos 3\left(30^{\circ}\right)=4 \cos ^{3} 30^{\circ}-3 \cos 30^{\circ}
\cos 90^{\circ}=4 \cos ^{3} 30^{\circ}-3 \cos 30^{\circ}
0=4 \times\left(\frac{\sqrt{3}}{2}\right)^{3}-3 \times \frac{\sqrt{3}}{2}
0=4 \times \frac{3 \sqrt{3}}{8}-\frac{3 \sqrt{3}}{2}
0=\frac{3 \sqrt{3}}{2}-\frac{3 \sqrt{3}}{2}
0=0 proved


TYPE III : समीकरण के हल पर आधारित प्रश्न :

Question 9

यदि sin (A+B)=1 और \cos (A-B)=\frac{\sqrt{3}}{2}, तब Aऔर B के मान ज्ञात करें ।
Sol :
sin (A+B)=1 
sin (A+B)=sin 90°
A+B=90°...(i)
\cos (A-B)=\frac{\sqrt{3}}{2}
cos(A-B)=cos 30°
A-B=30°....(ii)
समीकरण (i) तथा (ii) से
\begin{aligned}&A+B=90^{\circ} \\&A-B=30^{\circ} \\&\hline 2 A=120^{\circ}\end{aligned}

A=\frac{120^{\circ}}{2}
A=60^{\circ}

A का मान समीकरण (i) में रखने पर
\begin{aligned}&A+B=90^{\circ} \\&60^{\circ}+B=90^{\circ} \\&B=90^{\circ}-60^{\circ} \\&B=30^{\circ} \\&A=60^{\circ}, B=30^{\circ}\end{aligned}

Question 10

यदि \sin (A+B)=1 और \cos (A-B)=1, तब A और B के मान निकालें ।

Sol :
sin(A+B)=1
sin(A+B)=sin 90°
A+B=90°......(i)
cos(A-B)=1
cos(A-B)=cos 0°
A-B=0°.......(ii)
समीकरण (i) तथा (ii) से ,
\begin{aligned}&A+B=90^{\circ} \\&A-B=0^{\circ} \\ \hline&2 A=90^{\circ}\end{aligned}

A=\frac{90^{\circ}}{2}

A=45^{\circ}


A का मान समीकरण (i) में रखने पर

\begin{aligned}&A+B=90^{\circ} \\&45^{\circ}+B=90^{\circ}\\&B=90^{\circ}-45^{\circ}\\&B=45^{\circ} \\&A=45^{\circ}, B=45^{\circ}\end{aligned}


Question 11

यदि \sin (A-B)=\cos (A+B)=\frac{1}{2}, तब A और B ज्ञात कीजिए ।
Sol :
\begin{aligned}&\sin (A+B)=\frac{1}{2} \\&\sin (A+B)=\sin 30^{\circ}....(i) \\&A+B=30^{\circ} \\&\cos (A-B)=\frac{1}{2} \\&\cos (A-B)=\cos 60^{\circ}...(ii) \\&A-B=60^{\circ}\end{aligned}
समीकरण (i) तथा (ii) से
\begin{aligned}&A+B=30^{\circ} \\&\frac{A-B=60^{\circ}}{2 A=90^{\circ}}\end{aligned}

A=\frac{90^{\circ}}{2}

A=45^{\circ}

 

A का मान समीकरण (i) में रखने पर

A+B=60^{\circ}

45^{\circ}+B=90^{\circ}

B=60^{\circ}-45^{\circ}

B=15^{\circ}

A=45^{\circ}, B=15^{\circ}



Question 12

यदि (A-B)=\frac{1}{2}, \cos (A+B)=\frac{1}{2} ; 0°<A+B<90°; A>B तब A और B ज्ञात करें।
Sol :
\sin (A+B)=\frac{1}{2}
\sin (A+B)=\sin 30^{\circ}
A+B=30^{\circ}....(i)
\cos (A-B)=\frac{1}{2}
\cos (A-B)=\cos 60^{\circ}
A-B=60^{\circ}....(ii)

समीकरण (i) तथा (ii)सें
\begin{aligned}&A+B=30^{\circ} \\&\frac{A-B=60^{\circ}}{2 A=90^{\circ}}\end{aligned}

A=\frac{90^{\circ}}{2}

A=45^{\circ}


A का मान समीकरण (i) में रखने पर
A+B=60^{\circ}
45^{\circ}+B=90^{\circ}
B=60^{\circ}-45^{\circ}
B=15^{\circ}
A=45^{\circ}, B=15^{\circ}


Question 13

एक उदाहरण द्वारा दिखाइए कि \cos \mathrm{A}-\cos \mathrm{B} \neq \cos (\mathrm{A}-\mathrm{B})

(ii) \cos \mathrm{C}+\cos \mathrm{D} \neq \cos (\mathrm{C}+\mathrm{D})
(iii) \sin \mathrm{A}+\sin \mathrm{B} \neq \sin (\mathrm{A}+\mathrm{B})
(iv) \sin A-\sin B \neq \sin (A-B)
Sol :
(i)
cos A-cos B≠cos(A-B)
L.H.S
A=60° , B=30°
cos 60°-cos30°≠cos(60°-30°)
\frac{1}{2}-\frac{\sqrt{3}}{2} \neq \cos 30^{\circ}
\frac{1}{2}-\frac{\sqrt{3}}{2} \neq \frac{\sqrt{3}}{2}
\frac{1-\sqrt{3}}{2} \neq \frac{\sqrt{3}}{2} proved

(ii)
LHS
C=60^{\circ}, D=30^{\circ}
\cos 60^{\circ}+\cos 30^{\circ} \neq \cos \left(60^{\circ}+30^{\circ}\right)
\cos 60^{\circ}+\cos 30^{\circ} \neq \cos \left(90^{\circ}\right)
\frac{1}{2}+\frac{\sqrt{3}}{2} \neq 0
\frac{1+\sqrt{3}}{2} \neq 0 proved


(iii)
A=60^{\circ}, B=30^{\circ}
\sin 60^{\circ}+\sin 30^{\circ} \neq \sin \left(60^{\circ}+30^{\circ}\right)
\sin 60^{\circ}+\sin 30^{\circ} \neq \sin \left(90^{\circ}\right)
\frac{\sqrt{3}}{2}+\frac{1}{2} \neq 1
\frac{\sqrt{3}+1}{2} \neq 0 proved


(iv)
LHS
A=60^{\circ}, B=30^{\circ}
\sin 60^{\circ}-\sin 30^{\circ} \neq \sin \left(60^{\circ}-30^{\circ}\right)
\sin 60^{\circ}-\sin 30^{\circ} \neq \sin \left(30^{\circ}\right)
\frac{\sqrt{3}}{2}-\frac{1}{2} \neq \frac{1}{2}
\frac{\sqrt{3}-1}{2} \neq \frac{1}{2} \quad proved


TYPE IV: किसी समकोण त्रिभुज में एक भुजा और एक न्यूनकोण ज्ञात रहने पर दूसरी भुजा ज्ञात करने पर आधारित प्रश्न :

Question 14

एक समकोण \triangle \mathrm{ABC} में कर्ण \mathrm{AC}=10 \mathrm{~cm} और \angle \mathrm{A}=60^{\circ}, तब अन्य भुजाओं को ज्ञात कीजिए।
Sol :









sin 60°=लम्ब/कर्ण
\sin 60^{\circ}=\frac{B C}{A C}
\frac{\sqrt{3}}{2}=\frac{B C}{10}
\mathrm{BC}=5 \sqrt{5} \mathrm{~cm}

cos 60°=आधार /कर्ण 
\cos 60^{\circ}=\frac{A B}{A C}
\frac{1}{2}=\frac{A B}{10}
\mathrm{BC}=5 \mathrm{~cm}

Question 15

एक आयत \mathrm{ABCD} में \mathrm{BD}: \mathrm{BC}=2: \sqrt{3}, तब \angle \mathrm{BDC} का मान डिग्री में ज्ञात करें।
Sol :









cosec θ=कर्ण /लम्ब
\operatorname{cosec} \theta=\frac{B \mathrm{D}}{\mathrm{B} C}
\operatorname{cosec} \theta=\frac{2}{\sqrt{3}}
\operatorname{cosec} \theta=\operatorname{cosec} 60^{\circ}
\theta=60^{\circ}
कोण \mathrm{BDC}=60^{\circ}

1 comment:

Contact Form

Name

Email *

Message *