Exercise 8.1
Question 31
यदि 2tanθ=1 , तब \frac{3 \cos \theta+\sin \theta}{2 \cos \theta-\sin \theta} का मूल्य ज्ञात करे।
Sol :
tan θ=लम्ब/आधार=\frac{1}{2}=\frac{AB}{BC}
AC=\sqrt{(AB)^{2}-(BC)^{2}}
AC=\sqrt{(1)^{2}-(2)^{2}}=\sqrt{1+4}
AC=\sqrt{5}
sin θ=लम्ब/कर्ण=\frac{AB}{AC}=\frac{1}{\sqrt{5}}
cos θ=आधार/कर्ण =\frac{BC}{AC}=\frac{2}{\sqrt{5}}
\frac{3 \cos \theta+\sin }{2 \cos \theta-\sin \theta}=\frac{2 \times \frac{2}{\sqrt{5}}+\frac{1}{\sqrt{5}}}{2 \times \frac{2}{\sqrt{5}}-\frac{1}{\sqrt{5}}}
=\frac{\frac{6}{\sqrt{5}}+\frac{1}{\sqrt{5}}}{\frac{4}{\sqrt{5}}-\frac{1}{\sqrt{5}}}=\frac{\frac{6+1}{\sqrt{5}}}{\frac{2-1}{\sqrt{5}}}
=\frac{\frac{7}{\sqrt{5}}}{\frac{1}{\sqrt{5}}}=\frac{7}{3}
Question 32
यदि 5tan⍺=4 , तो दिखायें कि \frac{5 \sin \alpha-3 \cos \alpha}{5 \sin \alpha+2 \cos \alpha}=\frac{1}{6}
Sol :
\mathrm{AC}=\sqrt{(a b)^{2}+(b c)^{2}}
\mathrm{AC}=\sqrt{(4)^{2}+(5)^{2}}=\sqrt{16+25}
\mathrm{AC}=\sqrt{41}
sin ⍺=लम्ब/कर्ण=\frac{AB}{AC}=\frac{4}{\sqrt{41}}
cos ⍺=आधार/कर्ण=\frac{BC}{AC}=\frac{5}{\sqrt{41}}
LHS
\frac{5 \sin \alpha-3 \cos \alpha}{5 \sin \alpha+2 \cos \alpha}=\frac{5 \times \frac{4}{\sqrt{41}}-3 \times \frac{5}{\sqrt{41}}}{5 \times \frac{4}{\sqrt{41}}+2 \times \frac{5}{\sqrt{41}}}
=\frac{\frac{20}{\sqrt{41}}-\frac{15}{\sqrt{41}}}{\frac{20}{\sqrt{41}}+\frac{10}{\sqrt{41}}}=\frac{\frac{20-15}{\sqrt{41}}}{\frac{20+10}{\sqrt{41}}}
=\frac{5}{30}=\frac{1}{6}
LHS=RHLS proved
Question 33
यदि \cot \theta=\frac{3}{4} , तो सिद्ध करें कि \sqrt{\frac{\sec \theta+\operatorname{cosec} \theta}{\sec \theta-\operatorname{cosec} \theta}}=\sqrt{7}
Sol :
cot θ=आधार/लम्ब=\frac{3}{4}=\frac{BC}{AB}
\mathrm{AC}=\sqrt{(a b)^{2}+(b c)^{2}}
\mathrm{AC}=\sqrt{(4)^{2}+(3)^{2}}=\sqrt{16+9}
\mathrm{AC}=\sqrt{5}
sec θ=कर्ण/आधार=\frac{AC}{BC}=\frac{5}{3}
cosec θ==\frac{AC}{AB}=\frac{5}{4}
LHS
\sqrt{\frac{\sec \theta-\operatorname{coses} \theta}{\sec \theta-\operatorname{cosec} \theta}}=\sqrt{\frac{\frac{5}{3}+\frac{5}{4}}{\frac{5}{3}-\frac{5}{4}}}
=\sqrt{\frac{\frac{20+15}{12}}{\frac{20-15}{12}}}=\sqrt{\frac{\frac{35}{12}}{\frac{5}{12}}}
=\sqrt{\frac{35}{5}}=\sqrt{7}
LHS=RHS proved
Question 34
यदि \cot \theta=\frac{1}{\sqrt{3}} , तब सत्यापित करें कि \frac{1-\cos ^{2}\theta}{2-\sin ^{2} \theta}=\frac{3}{5}
Sol :
=\frac{\frac{1}{1}-\frac{1}{4}}{\frac{2}{1}-\frac{3}{4}}=\frac{3}{5}
=\frac{\frac{4-1}{4}}{\frac{8-3}{4}}
=\frac{3}{5}
Question 35
यदि \tan \theta=\frac{x}{y} , तब xsinθ+ycosθ का मान ज्ञात करें।
Sol :
tan θ=लम्ब/आधार=\frac{x}{y}==\frac{AB}{BC}
A C=\sqrt{(AB)^{2}+(BC)^{2}}
A C=\sqrt{x^{2}+y^{2}}
sin θ=लम्ब/कर्ण=\frac{AB}{AC}=\frac{x}{\sqrt{x^{2}+y^{2}}}
cos θ=आधार/कर्ण=\frac{BC}{AC}=\frac{y}{\sqrt{x^{2}+y^{2}}}
xsinθ+ycosθ
x \times \frac{x}{\sqrt{x^{2}+y^{2}}}+y \times \frac{y}{\sqrt{x^{2}+y^{2}}}
\frac{x}{\sqrt{x^{2}+y^{2}}}+\frac{y}{\sqrt{x^{2}+y^{2}}}
=\frac{x^{2}+y^{2}}{\sqrt{x^{2}+y^{2}}}=\frac{\sqrt{x^{2}+y^{2}} \times \sqrt{x^{2}+y^{2}}}{\sqrt{x^{2}+y^{2}}}
=\sqrt{x^{2}+y^{2}}
Question 36
यदि \sin \theta=\frac{3}{5} , तब tan2θ+sinθcosθ+cotθ का मान ज्ञात करें।
Sol :
sin θ=लम्ब/कर्ण=\frac{3}{5}=\frac{AB}{AC}
BC=\sqrt{(a c)^{2}-(a c)^{2}}
BC=\sqrt{(5)^{2}-(3)^{2}}
BC=\sqrt{25-9}=\sqrt{16}
BC=4
tan θ=लम्ब/आधार=\frac{AB}{BC}=\frac{3}{4}
cos θ=आधार/कर्ण=\frac{BC}{AC}=\frac{4}{5}
cot θ=आधार/लम्ब=\frac{BC}{AB}=\frac{4}{3}
\tan ^{2} \theta+\sin \theta \times \cos \theta+\cot \theta
=\left(\frac{3}{4}\right)^{2}+\frac{3}{5} \times \frac{4}{5}+\frac{4}{3}
=\frac{9}{16}+\frac{12}{25}+\frac{4}{3}
=\frac{2851}{1200}
Question 37
यदि 4cotθ=3, तो दिखायें कि \frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=7
Sol :
Question 38
यदि \sin \theta=\frac{m}{\sqrt{m^{2}+n^{2}}} , सिद्ध करें कि msinθ+ncosθ=\sqrt{m^{2}+n^{2}}
Sol :
m \times \frac{m}{\sqrt{m^{2}+n^{2}}}+n \times \frac{n}{\sqrt{m^{2}+n^{2}}}
\frac{m^{2}}{\sqrt{m^{2}+n^{2}}}+\frac{n^{2}}{\sqrt{m^{2}+n^{2}}}
=\frac{m^{2}+n^{2}}{\sqrt{m^{2}+n^{2}}}=\frac{\sqrt{m^{2}+n^{2}} \times \sqrt{m^{2}+n^{2}}}{\sqrt{m^{2}+n^{2}}}
=\sqrt{m^{2}+n^{2}}
LHS=RHS
Question 39
यदि \cos \alpha=\frac{12}{13} , तो सिद्ध करें कि sin⍺(1-tan⍺)=\frac{35}{156}
Sol :
cos ⍺=आधार/कर्ण=\frac{12}{13}=\frac{BC}{AC}
\mathrm{AB}=\sqrt{(a c)^{2}+(b c)^{2}}
\mathrm{AB}=\sqrt{(13)^{2}+(12)^{2}}
\mathrm{AB}=\sqrt{169+144}=\sqrt{25}
AB=5
sin ⍺=लम्ब/कर्ण=\frac{AB}{AC}=\frac{5}{13}
tan ⍺=लम्ब/आधार=\frac{AB}{BC}=\frac{5}{12}
LHS
sin ⍺(1-tan ⍺)=\frac{35}{156}
\frac{5}{13}\left(1-\frac{5}{12}\right)
=\frac{35}{156}=\frac{5}{13}\left(\frac{12-5}{12}\right)=\frac{35}{156}
=\frac{5}{13} \quad\left(\frac{17}{12}\right)=\frac{35}{156}
=\frac{35}{156}
LHS=RHS
Question 40
यदि q \cos \theta=\sqrt{q^{2}-p^{2}}, तो सिद्ध करें कि q \sin \theta=p
Sol :
cos θ=आधार/कर्ण=\frac{\sqrt{q^{2}}}{13}=\frac{BC}{AC}
\mathrm{AB}=\sqrt{(AC)^{2}-(BC)^{2}}
\mathrm{AB}=\sqrt{(q)^{2}-\left(\sqrt{q^{2}-p^{2}}\right)^{2}}
\mathrm{AB}=\sqrt{q^{2}-q^{2}+p^{2}}=\sqrt{p^{2}}
AB=p
sin θ=लम्ब/कर्ण=\frac{AB}{AC}=\frac{p}{q}
LHS
q.sin θ=p
q \times \frac{p}{q}=p
p=RHS
LHS=RHS
No comments:
Post a Comment