Processing math: 100%

KC Sinha Mathematics Solution Class 10 Chapter 8 त्रिकोणमितीय अनुपात एवम सर्वसमिकाए ( Trigonometry Ratios and Identities ) Exercise 8.1 (Q31-40)

 Exercise 8.1

Question 31

यदि 2tanθ=1 , तब \frac{3 \cos \theta+\sin \theta}{2 \cos \theta-\sin \theta} का मूल्य ज्ञात करे।

Sol :







tan θ=लम्ब/आधार=\frac{1}{2}=\frac{AB}{BC}

AC=\sqrt{(AB)^{2}-(BC)^{2}}

AC=\sqrt{(1)^{2}-(2)^{2}}=\sqrt{1+4}

AC=\sqrt{5}

sin θ=लम्ब/कर्ण=\frac{AB}{AC}=\frac{1}{\sqrt{5}}

cos θ=आधार/कर्ण =\frac{BC}{AC}=\frac{2}{\sqrt{5}}

\frac{3 \cos \theta+\sin }{2 \cos \theta-\sin \theta}=\frac{2 \times \frac{2}{\sqrt{5}}+\frac{1}{\sqrt{5}}}{2 \times \frac{2}{\sqrt{5}}-\frac{1}{\sqrt{5}}}

=\frac{\frac{6}{\sqrt{5}}+\frac{1}{\sqrt{5}}}{\frac{4}{\sqrt{5}}-\frac{1}{\sqrt{5}}}=\frac{\frac{6+1}{\sqrt{5}}}{\frac{2-1}{\sqrt{5}}}

=\frac{\frac{7}{\sqrt{5}}}{\frac{1}{\sqrt{5}}}=\frac{7}{3}


Question 32

यदि 5tan⍺=4 , तो दिखायें कि \frac{5 \sin \alpha-3 \cos \alpha}{5 \sin \alpha+2 \cos \alpha}=\frac{1}{6}

Sol :











tan ⍺=लम्ब/आधार=\frac{4}{5}=\frac{AB}{BC}

\mathrm{AC}=\sqrt{(a b)^{2}+(b c)^{2}}

\mathrm{AC}=\sqrt{(4)^{2}+(5)^{2}}=\sqrt{16+25}

\mathrm{AC}=\sqrt{41}

sin ⍺=लम्ब/कर्ण=\frac{AB}{AC}=\frac{4}{\sqrt{41}}

cos ⍺=आधार/कर्ण=\frac{BC}{AC}=\frac{5}{\sqrt{41}}

LHS

\frac{5 \sin \alpha-3 \cos \alpha}{5 \sin \alpha+2 \cos \alpha}=\frac{5 \times \frac{4}{\sqrt{41}}-3 \times \frac{5}{\sqrt{41}}}{5 \times \frac{4}{\sqrt{41}}+2 \times \frac{5}{\sqrt{41}}}

=\frac{\frac{20}{\sqrt{41}}-\frac{15}{\sqrt{41}}}{\frac{20}{\sqrt{41}}+\frac{10}{\sqrt{41}}}=\frac{\frac{20-15}{\sqrt{41}}}{\frac{20+10}{\sqrt{41}}}

=\frac{5}{30}=\frac{1}{6}

LHS=RHLS proved


Question 33

यदि \cot \theta=\frac{3}{4} , तो सिद्ध करें कि \sqrt{\frac{\sec \theta+\operatorname{cosec} \theta}{\sec \theta-\operatorname{cosec} \theta}}=\sqrt{7}

Sol :







cot θ=आधार/लम्ब=\frac{3}{4}=\frac{BC}{AB}

\mathrm{AC}=\sqrt{(a b)^{2}+(b c)^{2}}

\mathrm{AC}=\sqrt{(4)^{2}+(3)^{2}}=\sqrt{16+9}

\mathrm{AC}=\sqrt{5}

sec θ=कर्ण/आधार=\frac{AC}{BC}=\frac{5}{3}

cosec θ==\frac{AC}{AB}=\frac{5}{4}

LHS

\sqrt{\frac{\sec \theta-\operatorname{coses} \theta}{\sec \theta-\operatorname{cosec} \theta}}=\sqrt{\frac{\frac{5}{3}+\frac{5}{4}}{\frac{5}{3}-\frac{5}{4}}}

=\sqrt{\frac{\frac{20+15}{12}}{\frac{20-15}{12}}}=\sqrt{\frac{\frac{35}{12}}{\frac{5}{12}}}

=\sqrt{\frac{35}{5}}=\sqrt{7}

LHS=RHS proved


Question 34

यदि \cot \theta=\frac{1}{\sqrt{3}} , तब सत्यापित करें कि \frac{1-\cos ^{2}\theta}{2-\sin ^{2} \theta}=\frac{3}{5}

Sol :











cot θ=आधार/लम्ब=\frac{1}{\sqrt{3}}=\frac{BC}{AB}
tan ⍺=लम्ब/आधार=\frac{4}{5}=\frac{AB}{BC}

\mathrm{AC}=\sqrt{(a b)^{2}+(b c)^{2}}
\mathrm{AC}=\sqrt{(4)^{2}+(5)^{2}}=\sqrt{16+25}
\mathrm{AC}=\sqrt{41}

sin ⍺=लम्ब/कर्ण=\frac{AB}{AC}=\frac{4}{\sqrt{41}}

cos ⍺=आधार/कर्ण=\frac{BC}{AC}=\frac{5}{\sqrt{41}}

LHS
\frac{1-\operatorname{cos}^{2} \theta}{2-\sin ^{2} \theta}=\frac{3}{5}

=\frac{1-\left(\frac{1}{2}\right)^{2}}{2-\left(\frac{\sqrt{3}}{2}\right)^{2}}=\frac{3}{5}

=\frac{\frac{1}{1}-\frac{1}{4}}{\frac{2}{1}-\frac{3}{4}}=\frac{3}{5}

=\frac{\frac{4-1}{4}}{\frac{8-3}{4}}

=\frac{3}{5} 


Question 35

यदि \tan \theta=\frac{x}{y} , तब xsinθ+ycosθ का मान ज्ञात करें।

Sol :







tan θ=लम्ब/आधार=\frac{x}{y}==\frac{AB}{BC}

A C=\sqrt{(AB)^{2}+(BC)^{2}}

A C=\sqrt{x^{2}+y^{2}}

sin θ=लम्ब/कर्ण=\frac{AB}{AC}=\frac{x}{\sqrt{x^{2}+y^{2}}}

cos θ=आधार/कर्ण=\frac{BC}{AC}=\frac{y}{\sqrt{x^{2}+y^{2}}}

xsinθ+ycosθ

x \times \frac{x}{\sqrt{x^{2}+y^{2}}}+y \times \frac{y}{\sqrt{x^{2}+y^{2}}}

\frac{x}{\sqrt{x^{2}+y^{2}}}+\frac{y}{\sqrt{x^{2}+y^{2}}}

=\frac{x^{2}+y^{2}}{\sqrt{x^{2}+y^{2}}}=\frac{\sqrt{x^{2}+y^{2}} \times \sqrt{x^{2}+y^{2}}}{\sqrt{x^{2}+y^{2}}}

=\sqrt{x^{2}+y^{2}}


Question 36

यदि \sin \theta=\frac{3}{5} , तब tan2θ+sinθcosθ+cotθ का मान ज्ञात करें।

Sol :







sin θ=लम्ब/कर्ण=\frac{3}{5}=\frac{AB}{AC}

BC=\sqrt{(a c)^{2}-(a c)^{2}}

BC=\sqrt{(5)^{2}-(3)^{2}}

BC=\sqrt{25-9}=\sqrt{16}

BC=4

tan θ=लम्ब/आधार=\frac{AB}{BC}=\frac{3}{4}

cos θ=आधार/कर्ण=\frac{BC}{AC}=\frac{4}{5}

cot θ=आधार/लम्ब=\frac{BC}{AB}=\frac{4}{3}

\tan ^{2} \theta+\sin \theta \times \cos \theta+\cot \theta

=\left(\frac{3}{4}\right)^{2}+\frac{3}{5} \times \frac{4}{5}+\frac{4}{3}

=\frac{9}{16}+\frac{12}{25}+\frac{4}{3}

=\frac{2851}{1200}


Question 37

यदि 4cotθ=3, तो दिखायें कि \frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=7

Sol :











cot θ=आधार/लम्ब=\frac{3}{4}=\frac{BC}{AB}

\mathrm{AC}=\sqrt{(a b)^{2}+(b c)^{2}}
\mathrm{AC}=\sqrt{(4)^{2}+(3)^{2}}
\mathrm{AC}=\sqrt{16+9}=\sqrt{25}
AC=5

sin θ=लम्ब/कर्ण=\frac{AB}{AC}=\frac{4}{5}

cos θ=आधार/कर्ण=\frac{BC}{AC}=\frac{3}{5}

LHS

\frac{\sin \theta+\cos \theta}{\sin \theta+\cos \theta}=\frac{\frac{4}{5}+\frac{3}{5}}{\frac{4}{5}-\frac{3}{5}}
=\frac{\frac{4+3}{5}}{\frac{4-3}{5}}=\frac{\frac{7}{5}}{\frac{1}{5}}
=7

Question 38

यदि \sin \theta=\frac{m}{\sqrt{m^{2}+n^{2}}} , सिद्ध करें कि msinθ+ncosθ=\sqrt{m^{2}+n^{2}}

Sol :











sin θ=लम्ब/कर्ण=\frac{m}{\sqrt{m^{2}+n^{2}}}=\frac{a b}{a c}

\mathrm{BC}=\sqrt{(AC)^{2}-(AB)^{2}}
\mathrm{BC}=\sqrt{\left(\sqrt{m^{2}+n^{2}}\right)^{2}-m^{2}}
\mathrm{BC}=\sqrt{m^{2}+n^{2}-m^{2}}=\sqrt{n^{2}}
BC=n

cos θ=आधार/कर्ण=\frac{BC }{AC}=\frac{n}{\sqrt{m^{2}+n^{2}}}

LHS
m.sin+θ n.cos θ=\sqrt{m^{2}+n^{2}}

m \times \frac{m}{\sqrt{m^{2}+n^{2}}}+n \times \frac{n}{\sqrt{m^{2}+n^{2}}}

\frac{m^{2}}{\sqrt{m^{2}+n^{2}}}+\frac{n^{2}}{\sqrt{m^{2}+n^{2}}}

=\frac{m^{2}+n^{2}}{\sqrt{m^{2}+n^{2}}}=\frac{\sqrt{m^{2}+n^{2}} \times \sqrt{m^{2}+n^{2}}}{\sqrt{m^{2}+n^{2}}}

=\sqrt{m^{2}+n^{2}}

LHS=RHS


Question 39

यदि \cos \alpha=\frac{12}{13} , तो सिद्ध करें कि sin⍺(1-tan⍺)=\frac{35}{156}

Sol :







cos ⍺=आधार/कर्ण=\frac{12}{13}=\frac{BC}{AC}

\mathrm{AB}=\sqrt{(a c)^{2}+(b c)^{2}}

\mathrm{AB}=\sqrt{(13)^{2}+(12)^{2}}

\mathrm{AB}=\sqrt{169+144}=\sqrt{25}

AB=5

sin ⍺=लम्ब/कर्ण=\frac{AB}{AC}=\frac{5}{13}

tan ⍺=लम्ब/आधार=\frac{AB}{BC}=\frac{5}{12}

LHS

sin ⍺(1-tan ⍺)=\frac{35}{156}

\frac{5}{13}\left(1-\frac{5}{12}\right)

=\frac{35}{156}=\frac{5}{13}\left(\frac{12-5}{12}\right)=\frac{35}{156}

=\frac{5}{13} \quad\left(\frac{17}{12}\right)=\frac{35}{156}

=\frac{35}{156}

LHS=RHS


Question 40

यदि q \cos \theta=\sqrt{q^{2}-p^{2}}, तो सिद्ध करें कि q \sin \theta=p

Sol :








cos θ=आधार/कर्ण=\frac{\sqrt{q^{2}}}{13}=\frac{BC}{AC}

\mathrm{AB}=\sqrt{(AC)^{2}-(BC)^{2}}

\mathrm{AB}=\sqrt{(q)^{2}-\left(\sqrt{q^{2}-p^{2}}\right)^{2}}

\mathrm{AB}=\sqrt{q^{2}-q^{2}+p^{2}}=\sqrt{p^{2}}

AB=p

sin θ=लम्ब/कर्ण=\frac{AB}{AC}=\frac{p}{q}

LHS

q.sin θ=p

q \times \frac{p}{q}=p

p=RHS

LHS=RHS

No comments:

Post a Comment

Contact Form

Name

Email *

Message *