Processing math: 1%

KC Sinha Mathematics Solution Class 10 Chapter 8 त्रिकोणमितीय अनुपात एवम सर्वसमिकाए ( Trigonometry Ratios and Identities ) Exercise 8.3 (Q11-Q20)

Exercise 8.3

Question 11

किसी \triangle \mathrm{ABC} में सिद्ध कीजिए कि-
(a) \sin \frac{\mathrm{B}+\mathrm{C}}{2}=\cos \frac{\mathrm{A}}{2}
Sol :
त्रिभुज के तीनों कोणो का मान 180^{\circ} होता है
A+B+C=180^{\circ}
B+C=180^{\circ}-A

LHS
\sin \frac{B+C}{2}=\cos \frac{A}{2}
\sin \left(\frac{180^{\circ}-\mathrm{A}}{2}\right)=\cos \frac{\mathrm{A}}{2}
\sin \left(\frac{180^{\circ}}{2}-\frac{A}{2}\right)=\cos \frac{A}{2}
\sin \left(90^{\circ}-\frac{A}{2}\right)=\cos \frac{A}{2}
\cos \frac{A}{2}=\cos \frac{A}{2}

(b) \tan \frac{\mathrm{B}+\mathrm{C}}{2}=\cot \frac{\mathrm{A}}{2}
Sol :
त्रिभुज के तीनों कोणो का मान 180^{\circ} होता है
\begin{aligned}&A+B+C=180^{\circ} \\&B+C=180^{\circ}-A\end{aligned}

LHS
\tan \frac{B+C}{2}=\cot \frac{A}{2}
\tan \left(\frac{180^{\circ}-A}{2}\right)=\cot \frac{A}{2}

\tan \left(\frac{180^{\circ}}{2}-\frac{A}{2}\right)=\cot \frac{A}{2}

\tan \left(90^{\circ}-\frac{A}{2}\right)=\cot \frac{A}{2}

\cot \frac{A}{2}=\cot \frac{A}{2}



(c) \cos \frac{\mathrm{A}+\mathrm{B}}{2}=\sin \frac{\mathrm{C}}{2}
Sol :
त्रिभुज के तीनों कोणो का मान 180^{\circ} होता है
\begin{aligned}&A+B+C=180^{\circ} \\&A+B=180^{\circ}-A\end{aligned}

L.H.S
\begin{aligned}&\cos \frac{A+B}{2}=\sin \frac{A}{2} \\&\cos \left(\frac{180^{\circ}-C}{2}\right)=\sin \frac{C}{2}\end{aligned}

\cos \frac{A+B}{2}=\sin \frac{A}{2}

\cos \left(\frac{180^{\circ}-C}{2}\right)=\sin \frac{C}{2}

\cos \left(\frac{180^{\circ}}{2}-\frac{C}{2}\right)=\sin \frac{C}{2}

\cos \left(90^{\circ}-\frac{\mathrm{C}}{2}\right)=\sin \frac{\mathrm{C}}{2}

\sin \frac{\mathrm{C}}{2}=\sin \frac{\mathrm{C}}{2}


Question 12

(i) यदि \sin 3 \mathrm{~A}=\cos \left(\mathrm{A}-26^{\circ}\right), जहाँ 3 \mathrm{~A} एक न्यूनकोण है तब \mathrm{A} का मान ज्ञात कीजिए ।
Sol :
\cos \left(90^{\circ}-3 A\right)=\cos \left(A-26^{\circ}\right)
90^{\circ}-3 A=A-26^{\circ}
90^{\circ}+26^{\circ}=A+3 A
116^{\circ}=4 A
A=\frac{116}{4}
A=29^{\circ}

(ii) यदि \cos \left(2 \theta+54^{\circ}\right)=\sin \theta. जहाँ \left(2 \theta+54^{\circ}\right) एक न्यूनकोण है तब \theta का मान ज्ञात कीजिए ।
Sol :
\cos \left(2 \theta+54^{\circ}\right)=\cos \left(90^{\circ}-\theta\right)
2 \theta+54^{\circ}=90^{\circ}-\theta
2 \theta+\theta=90^{\circ}-54^{\circ}
3 \theta=36^{\circ}
\theta=\frac{36^{\circ}}{3}
\theta=12^{\circ}


(iii) यदि \tan 3 \theta=\cot \left(\theta+18^{\circ}\right), जहाँ 3 \theta और \theta+18^{\circ} न्यूनकोण हैं, तो \theta का मान ज्ञात कीजिए ।
Sol :
\cot =\left(90^{\circ}-3 \theta\right)=\cot \left(\theta+18^{\circ}\right)
90^{\circ}-3 \theta=\theta+18^{\circ}
-3 \theta-\theta=18^{\circ}-90^{\circ}
-4 \theta=-72^{\circ}
\theta=\frac{72}{4}
\theta=18^{\circ}


(iv) यदि \sec 5 \theta=\operatorname{cosec}\left(\theta-36^{\circ}\right), जहाँ 5θ एक न्यूनकोण है, तो θ का मान निकालिए ।
Sol :
\operatorname{cosec}\left(90^{\circ}-5 \theta\right)=\operatorname{cosec}\left(\theta-36^{\circ}\right)
90^{\circ}-5 \theta=\theta-36^{\circ}
90^{\circ}+36^{\circ}=\theta+5 \theta
126^{\circ}=6 \theta
6 \theta=126^{\circ}
\theta=\frac{126}{6}
\theta=21^{\circ}


सिद्ध कीजिए कि :

Question 13

\sin 70^{\circ} \cdot \sec 20^{\circ}=1

Sol :
L.H.S
\sin 70^{\circ} . \operatorname{Sec} 20^{\circ}
\sin 70^{\circ} \cdot \operatorname{cosec}\left(90^{\circ}-20^{\circ}\right)
\sin 70^{\circ} \cdot \operatorname{cosec} 70^{\circ}=1 R.H.S

Question 14

\sin \left(90^{\circ}-\theta\right) \tan \theta=\sin \theta
Sol :
L.H.S
\sin \left(90^{\circ}-\theta\right) \cdot \tan \theta
\cos \theta \times \frac{\sin \theta}{\cos \theta}
=\sin \theta R.H.S

Question 15

\tan 63^{\circ} \cdot \tan 27^{\circ}=1
Sol :
L.H.S
\tan 63^{\circ} . \tan 27
\tan 63^{\circ} \cdot \cot \left(90^{\circ}-27^{\circ}\right)
\tan 63^{\circ} \cdot \cot 63^{\circ}
=1 R.H.S

Question 16

\frac{\sin \left(90^{\circ}-\theta\right) \sin \theta}{\tan \theta}-1=-\sin ^{2} \theta
Sol :
L.H.S
$
\begin{aligned}
&\frac{\sin \left(90^{\circ}-\theta\right) \sin \theta}{\tan \theta}-1 \\
&\frac{\cos \theta \cdot \sin \theta}{\frac{\sin \theta}{\cos \theta}}-1 \\
&\cos ^{2}-1 \\
&-\sin ^{2} \theta \text { R.H.S }
\end{aligned}
$

Question 17

\sin 55^{\circ} \cdot \cos 48^{\circ}=\cos 35^{\circ} \cdot \sin 42^{\circ}
Sol :
L.H.S
\sin 55^{\circ} \cdot \cos 48^{\circ}
\cos \left(90^{\circ}-55^{\circ}\right) \cdot \sin \left(90^{\circ}-48^{\circ}\right)
\cos 35^{\circ} . \operatorname{Sin} 42^{\circ} \quad R.H.S

Question 18

\sin 25^{\circ} \cdot \sin 65^{\circ}=\cos 25^{\circ} \cdot \cos 65^{\circ}
Sol :
L.H.S
\sin 25^{\circ} . \operatorname{Sin} 65^{\circ}
\cos \left(90^{\circ}-25^{\circ}\right) \cdot \cos \left(90^{\circ}-65^{\circ}\right)
\cos 25^{\circ} \cdot \cos 65^{\circ} \quad R.H.S

Question 19

\sin 54^{\circ}+\cos 67^{\circ}=\sin 23^{\circ}+\cos 36^{\circ}
Sol :
L.H.S
\sin 54^{\circ} \cdot \cos 67^{\circ}
\cos \left(90^{\circ}-54^{\circ}\right) \cdot \sin \left(90^{\circ}-67^{\circ}\right)
\sin 23^{\circ} \cdot \cos 36^{\circ} \quad R.H.S

Question 20

\cos 27^{\circ}+\sin 51^{\circ}=\sin 63^{\circ}+\cos 39^{\circ}
Sol :
L.H.S
\cos 27^{\circ} \cdot \sin 51^{\circ}
\sin \left(90^{\circ}-27^{\circ}\right) \cdot \cos \left(90^{\circ}-51^{\circ}\right)
\sin 63^{\circ} \cdot \cos 39^{\circ} \quad R.H.S

1 comment:

Contact Form

Name

Email *

Message *