Exercise 8.4
Question 11
\frac{(1-\cos \theta)(1+\cos \theta)}{(1-\sin \theta)(1+\sin \theta)}=\tan ^{2} \theta
Sol :
LHS
\frac{(1-\cos \theta)(1+\cos \theta)}{(1-\sin \theta)(1+\sin \theta)}
\frac{1^{2}-\cos ^{2} \theta}{1^{2}-\sin ^{2} \theta}=\frac{1-\cos ^{2} \theta}{1-\sin ^{2} \theta}
\frac{\sin ^{2} \theta}{\cos ^{2} \theta}=\tan ^{2} \theta
Question 12
\frac{1}{\sec \theta+\tan \theta}=\sec \theta-\tan \theta
Sol :
LHS
=\frac{\sec ^{2} \theta-\tan ^{2} \theta}{\sec \theta+\tan \theta}=\frac{(\sec \theta-\tan \theta)(\sec \theta+\tan \theta)}{\sec \theta+\tan \theta}
=\sec \theta-\tan \theta= R.H.S
Question 13
\frac{\sin ^{3} \theta+\cos ^{3} \theta}{\sin \theta+\cos \theta}+\sin \theta \cos \theta=1
Sol :
\frac{\sin ^{3} \theta+\cos ^{3} \theta}{\sin \theta+\cos \theta}+\sin \theta \times \cos \theta
a^{3}+b^{3}=(\mathrm{a}+\mathrm{b})\left(a^{2}-a b+b^{2}\right)
\frac{(\sin \theta+\cos \theta)\left(\sin ^{2} \theta-\sin \theta \times \cos \theta+\cos ^{2}\right)}{\sin \theta+\cos \theta}+\sin \theta \times \cos \theta
\sin ^{2} \theta-\sin \theta \times \cos \theta+\cos ^{2} \theta+\sin \theta \times \cos \theta
\sin ^{2} \theta+\cos ^{2} \theta-\sin \theta \times \cos \theta+\sin \theta \times \cos \theta
1-\sin \theta \times \cos \theta+\sin \theta \times \cos \theta
=1 RHS
Type II : LCM लेकर सर्वसमिकाओं को सिद्ध करने पर आधारित प्रश्न :
Question 14
निम्नलिखित सर्वसमिकाओं को सिद्ध करें :
(i) \sin \theta \cdot \cot \theta=\cos \theta
Sol :
LHS
\sin \theta \times \cot \theta
\sin \theta \times \frac{\cos \theta}{\sin \theta}=\cos \theta
RHS
(ii) \sin ^{2} \theta\left(1+\cot ^{2} \theta\right)=1
Sol :
LHS
\sin ^{2} \theta\left(1+\cot ^{2} \theta\right)
\sin ^{2} \theta \times \operatorname{cosec}^{2} \theta=(\sin \theta \times \operatorname{cosec} \theta)^{2}
(1)^{2}=1=RHS
(iii) \cos ^{2} \mathrm{~A}\left(\tan ^{2} \mathrm{~A}+1\right)=1
Sol :
LHS
\cos ^{2} A\left(\tan ^{2} A+1\right)
\cos ^{2} A \times \sec ^{2} A
(\cos A \times \sec A)^{2}
(1)^{2}=1 RHS
(iv) \tan ^{4} \theta+\tan ^{2} \theta=\sec ^{4} \theta-\sec ^{2} \theta
Sol :
LHS
\tan ^{4} \theta+\tan ^{2} \theta
\left(\tan ^{2} \theta\right)^{2}+\tan ^{2} \theta
\left(\sec ^{2} \theta-1\right)^{2}+\sec ^{2} \theta-1
\left(\sec ^{2} \theta\right)^{2}-2 \sec ^{2} \theta \times 1+(1)^{2}+\sec ^{2} \theta-1
\sec ^{4} \theta- 2\sec ^{2} \theta+1+\sec ^{2} \theta-1☺
\sec ^{4} \theta-\sec ^{4} \theta
(v) \frac{\left(1+\tan ^{2} \theta\right) \sin ^{2} \theta}{\tan \theta}=\tan \theta
Sol :
LHS
\frac{\left(1+\tan ^{2} \theta\right) \sin ^{2}}{\tan \theta}
\frac{\sec ^{2} \theta \times \sin ^{2} \theta}{\tan \theta}
\frac{\frac{1}{\cos ^{2} \theta} \times \sin ^{2} \theta}{\frac{\sin \theta}{\cos \theta}}
=\frac{1}{\cos \theta} \times \sin \theta=\frac{\sin \theta}{\cos \theta}=\tan \theta
(vi) \frac{\sin ^{2} \theta}{\cos ^{2} \theta}+1=\frac{\tan ^{2} \theta}{\sin ^{2} \theta}
Sol :
LHS
\frac{\sin ^{2} \theta}{\cos ^{2} \theta}+1
\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos ^{2} \theta}=\frac{1}{\cos ^{2} \theta}=\operatorname{sec}^{2} \theta
RHS
\frac{\tan ^{2} \theta}{\sin ^{2} \theta}=\frac{\sin ^{2} \theta}{\frac{\cos ^{2} \theta}{\sin ^{2} \theta}}
=\frac{1}{\cos ^{2} \theta}=\sec ^{2} \theta
LHS=RHS
(vii) \frac{3-4 \sin ^{2} \theta}{\cos ^{2} \theta}=3-\tan ^{2} \theta
Sol :
LHS
\frac{3-4 \sin ^{2} \theta}{\cos ^{2} \theta}
\frac{3}{\cos ^{2} \theta}-\frac{4 \sin ^{2} \theta}{\cos ^{2} \theta}
3 \sec ^{2} \theta-4 \tan ^{2} \theta
3 \tan ^{2} \theta-4 \tan ^{2} \theta
3-\tan ^{2} \theta R.H.S
(viii) \left(1+\tan ^{2} \theta\right) \cos \theta \cdot \sin \theta=\tan \theta
Sol :
LHS
\left(1+\tan ^{2} \theta\right) \cos \theta \cdot \sin \theta
\sec ^{2} \theta \times \cos \theta \times \sin \theta
\frac{1}{\cos ^{2} \theta} \times \cos \theta \times \sin \theta
\frac{\sin \theta}{\cos \theta}=\tan \theta
R.H.S
(ix) \sin ^{2} \theta-\cos ^{2} \phi=\sin ^{2} \phi-\cos ^{2} \theta
Sol :
LHS
\sin ^{2} \theta-\cos ^{2} \phi
\left(1-\cos ^{2} \theta\right)-\left(1-\sin ^{2} \phi\right)
1- \cos ^{2} \theta-1+\sin ^{2} \phi
-\cos ^{2} \theta+\sin ^{2} \phi
\sin ^{2} \phi-\cos ^{2} \theta RHS
(x) \frac{1-\tan ^{2} \theta}{\cot ^{2} \theta-1}=\tan ^{2} \theta
Sol :
LHS
\frac{1-\tan ^{2} \theta}{\cot ^{2} \theta-1}
\frac{1-\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}{\frac{\cos ^{2}}{\sin ^{2}}-1}
\frac{\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\cos ^{2} \theta}}{\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\sin ^{2} \theta}}
\frac{\sin ^{2} \theta}{\cos ^{2} \theta}=\tan ^{2} \theta
RHS
Question 15
निम्नलिखित सर्वसमिकाओं को सिद्ध करें :
(i) (1-\cos \theta)(1+\cos \theta)\left(1+\cot ^{2} \theta\right)=1
Sol :
LHS
=(1-\cos \theta)(1+\cos \theta)\left(1+\cot ^{2} \theta\right)
=\left(1-\cos ^{2} \theta\right)\left(1+\cot ^{2} \theta\right)
=\sin ^{2} \theta \times \operatorname{cosec}^{2} \theta
=1
(ii) \frac{(1+\sin \theta)^{2}+(1-\sin \theta)^{2}}{2 \cos ^{2} \theta}=\frac{1+\sin \theta}{1-\sin ^{2} \theta}
Sol :
LHS
\frac{(1+\sin \theta)^{2}+(1-\sin \theta)^{2}}{2 \cos ^{2} \theta}
\frac{\left(1^{2}+\sin ^{2} \theta+2 \times 1 \times \sin \theta\right)+\left(1^{2}+\sin ^{2} \theta-2 \times 1 \times \sin \theta\right)}{2 \cos ^{2} \theta}
\frac{1+\sin ^{2} \theta+2 \sin \theta+1+\sin ^{2} \theta-2 \sin \theta}{2 \cos ^{2} \theta}
\frac{2+2 \sin ^{2} \theta}{2 \cos ^{2} \theta}=\frac{2\left(1+\sin ^{2} \theta\right)}{2\left(1-\sin ^{2} \theta\right)}
\frac{1-\sin ^{2} \theta}{1+\sin ^{2} \theta}
RHS
(iii) \frac{\cos ^{2} \theta(1-\cos \theta)}{\sin ^{2} \theta(1-\sin \theta)}=\frac{1+\sin \theta}{1+\cos \theta}
Sol :
LHS
\frac{\cos ^{2} \theta(1-\cos \theta)}{\sin ^{2} \theta(1-\sin \theta)}
\frac{\left(1-\sin ^{2} \theta\right)(1-\cos \theta)}{\left(1-\cos ^{2} \theta\right)(1-\sin \theta)}
\frac{(1-\sin \theta)(1+\sin )(1-\cos \theta)}{(1-\operatorname{cos} \theta)(1+\cos \theta)(1-\sin \theta)}
\frac{1+\sin \theta}{1+\cos \theta} RHS
(iv) (\sin \theta-\cos \theta)^{2}=1-2 \sin \theta \cdot \cos \theta
Sol :
LHS
(\sin \theta-\cos \theta)^{2}
\sin ^{2} \theta+\cos ^{2} \theta-2 \times \sin \theta \times \cos \theta
\sin ^{2} \theta+\cos ^{2} \theta-2 \sin \theta \times \cos \theta
1-2 \sin \theta \times \cos \theta
R.H.S
(v) (\sin \theta+\cos \theta)^{2}+(\sin \theta-\cos \theta)^{2}=2
Sol :
LHS
(\sin \theta+\cos \theta)^{2}+(\sin \theta-\cos \theta)^{2}=2
\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \times \cos \theta+\sin ^{2} \theta+\cos ^{2} \theta-2 \sin \theta \times \cos \theta
\sin ^{2} \theta+\cos ^{2} \theta+\sin ^{2} \theta+\cos ^{2} \theta
2 \sin ^{2} \theta+2 \cos ^{2} \theta
2\left(\sin ^{2} \theta+\cos ^{2} \theta\right)
2×1=2 RHS
(vi) (a \sin \theta+b \cos \theta)^{2}+(a \cos \theta-b \sin \theta)^{2}=a^{2}+b^{2}
Sol :
LHS
(a \sin \theta+b \cos \theta)^{2}+(a \cos \theta-b \sin \theta)^{2}
(a \sin \theta)^{2}+(b \cos \theta)^{2}+2 \times a \sin \theta \times b \cos \theta+(a \cos \theta)^{2}+(b \sin \theta)^{2}-2 a \cos \theta \times b \sin \theta
a^{2} \times \sin ^{2} \theta+b^{2} \times \cos ^{2} \theta+2 a \sin \theta \times b \cos \theta+a^{2} \times \cos ^{2} \theta+b^{2} \times \sin ^{2} \theta-2 a \cos \theta \times b \sin \theta
a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta+a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta
\left(a^{2} \sin ^{2} \theta+a^{2} \cos ^{2} \theta\right)+\left(b^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta\right)
a^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+b^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)
a^{2} \times 1+b^{2} \times 1
a^{2}+b^{2}
RHS
(vii) \cos ^{4} A+\sin ^{4} A+2 \sin ^{2} A \cdot \cos ^{2} A=1
Sol :
LHS
\cos ^{4} A+\sin ^{4} A+2 \sin ^{2} A \times \cos ^{2} A
\left(\cos ^{2} A\right)^{2}-\left(\sin ^{2} A\right)^{2}+2 \sin ^{2} A \times \cos ^{2} A
\left(\cos ^{2} A+\sin ^{2} A\right) 2 \sin ^{2} A \times \cos ^{2} A
=(1)^{2}=1 RHS
(viii) \sin ^{4} A-\cos ^{4} A=2 \sin ^{2} A-1=1-2 \cos ^{2} A=\sin ^{2} A-\cos ^{2} A
Sol :
LHS
\sin ^{4} A-\cos ^{4} A
\left(\sin ^{2} A\right)^{2}-\left(\cos ^{2} A\right)^{2}
\left(\sin ^{2} A+\cos ^{2} A\right)\left(\sin ^{2} A-\cos ^{2} A\right)
=\sin ^{2} A-\cos ^{2} A
=\sin ^{2} A-\left(1-\sin ^{2} A\right)
=\sin ^{2} A-1+\sin ^{2} A
=2 \sin ^{2} A-1
=2\left(-\cos ^{2} A\right)-1
=2-2 \cos ^{2} A-1=1-2 \cos ^{2} A
=RHS
(ix) \cos ^{4} \theta-\sin ^{4} \theta=\cos ^{2} \theta-\sin ^{2} \theta=2 \cos ^{2} \theta-1
Sol :
LHS
\cos ^{4} \theta-\sin ^{4} \theta=\cos ^{2} \theta-\sin ^{2} \theta=2 \cos ^{2} \theta-1
\cos ^{4} \theta-\sin ^{4} \theta=\left(\cos ^{2} \theta\right)^{2}-\left(\sin ^{2} \theta\right)^{2}
\left(\cos ^{2} \theta+\sin ^{2} \theta\right)\left(\cos ^{2} \theta-\sin ^{2} \theta\right)
\cos ^{2} \theta-\sin ^{2} \theta
\cos ^{2} \theta-\left(1-\cos ^{2} \theta\right)
\cos ^{2} \theta-1+\cos ^{2} \theta
2 \cos ^{2} \theta-1
RHS
(x) 2 \cos ^{2} \theta-\cos ^{4} \theta+\sin ^{4} \theta=1
Sol :
LHS
2 \cos ^{2} \theta-\cos ^{4} \theta+\sin ^{4} \theta
2 \cos ^{2} \theta-\left(\cos ^{2} \theta\right)^{2}+\left(\sin ^{2} \theta\right)^{2}
2 \cos ^{2} \theta-\left(\cos ^{2} \theta+\sin ^{2} \theta\right)
2 \cos ^{2} \theta-\cos ^{2} \theta+\sin ^{2} \theta
2 \cos ^{2} \theta-\cos ^{2} \theta+1-\cos ^{2} \theta
2 \cos ^{2} \theta-2 \cos ^{2} \theta+1
0+1=1
(xi) 1-2 \cos ^{2} \theta+\cos ^{4} \theta=\sin ^{4} \theta
Sol :
LHS
1-2 \cos ^{2} \theta+\cos ^{4} \theta
1^{2}-2 \times 1 \times \cos ^{2} \theta+\left(\cos ^{2}\right)^{2}
\left(1-\cos ^{2} \theta\right)^{2}
\left(\sin ^{2} \theta\right)^{4}=\sin ^{4} \theta
RHS
(xii) 1-2 \sin ^{2} \theta+\sin ^{4} \theta=\cos ^{4} \theta
Sol :
LHS
1-2 \sin ^{2} \theta+\sin ^{4} \theta
1^{2}-2 \times 1 \times \sin ^{2} \theta+\left(\sin ^{2}\right)^{2}
\left(1-\sin ^{2} \theta\right)^{2}
\left(\cos ^{2} \theta\right)^{2}=\cos ^{4} \theta
RHS
Question 16
निम्नलिखित सर्वसमिकाओं को सिद्ध करें :
(i) \sec ^{2} \theta+\operatorname{cosec}^{2} \theta=\sec ^{2} \theta \cdot \operatorname{cosec}^{2} \theta
Sol :
LHS
\sec ^{2} \theta+\operatorname{cosec}^{2} \theta
\frac{1}{\cos ^{2} \theta}+\frac{1}{\sin ^{2} \theta}
\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos ^{2} \theta \times \sin ^{2} \theta}
\frac{1}{\cos ^{2} \theta \times \sin ^{2} \theta}
=\frac{1}{\frac{1}{\sec ^{2} \theta} \times \frac{1}{\operatorname{cosec}^{2} \theta}}
\sec ^{2} \theta \times \operatorname{cosec}^{2} \theta
RHS
(ii) \frac{\cos ^{2} \theta}{\sin \theta}+\sin \theta=\operatorname{cosec} \theta
Sol :
LHS
\frac{\cos ^{2} \theta}{\sin \theta}+\sin \theta
\frac{1-\sin ^{2} \theta}{\sin \theta}+\sin \theta
\frac{1}{\sin \theta}-\frac{\sin ^{2} \theta}{\sin \theta}+\sin \theta
\frac{1}{\sin \theta}-\sin \theta+\sin \theta
cosec θ
RHS
(iii) \cot \theta+\tan \theta=\operatorname{cosec} \theta \cdot \sec \theta
Sol :
LHS
\cot \theta+\tan \theta
\frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\cos \theta}
\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\sin \theta \times \cos \theta}
\frac{1}{\sin \theta \times \cos \theta}
\frac{1}{\frac{1}{\sin \theta} \times \frac{1}{\cos \theta}}
\operatorname{cosec} \theta \times \sec \theta
RHS
Question 17
\frac{1-\sin \theta}{1+\sin \theta}=\left(\frac{1-\sin \theta}{\cos \theta}\right)^{2}
Sol :
LHS
\frac{1-\sin \theta}{1+\sin \theta}
परिमेयकरण करने पर
\frac{1-\sin \theta}{1+\sin \theta} \times \frac{1-\sin \theta}{1-\sin \theta}
\frac{(1-\sin \theta)^{2}}{(1)^{2}-(\sin \theta)^{2}}
\frac{(1-\sin \theta)^{2}}{1-\sin ^{2} \theta}
\frac{(1-\sin \theta)^{2}}{\cos ^{2} \theta
\left(\frac{1-\sin \theta}{\cos \theta}\right)^{2}
RHS
Question 18
\frac{1-\cos \theta}{1+\cos \theta}=\left(\frac{1-\cos \theta}{\sin \theta}\right)^{2}
Sol :
LHS
\frac{1-\cos \theta}{1+\cos \theta}
परिमेयकरण करने पर
\frac{1-\cos \theta}{1+\cos \theta} \times \frac{1-\cos \theta}{1-\cos \theta}
\frac{(1-\cos \theta)^{2}}{(1)^{2}-(\cos \theta)^{2}}
\frac{(1-\cos \theta)^{2}}{1-\cos ^{2} \theta}
\frac{(1-\cos \theta)^{2}}{\sin ^{2} \theta}
\left(\frac{1-\cos \theta}{\sin \theta}\right)^{2} RHS
I liked it 😊😊😊
ReplyDelete