Processing math: 100%

KC Sinha Mathematics Solution Class 10 Chapter 8 त्रिकोणमितीय अनुपात एवम सर्वसमिकाए ( Trigonometry Ratios and Identities ) Exercise 8.4 (Q11-Q20)

Exercise 8.4

Question 11

\frac{(1-\cos \theta)(1+\cos \theta)}{(1-\sin \theta)(1+\sin \theta)}=\tan ^{2} \theta

Sol :

LHS

\frac{(1-\cos \theta)(1+\cos \theta)}{(1-\sin \theta)(1+\sin \theta)}

\frac{1^{2}-\cos ^{2} \theta}{1^{2}-\sin ^{2} \theta}=\frac{1-\cos ^{2} \theta}{1-\sin ^{2} \theta}

\frac{\sin ^{2} \theta}{\cos ^{2} \theta}=\tan ^{2} \theta


Question 12

\frac{1}{\sec \theta+\tan \theta}=\sec \theta-\tan \theta

Sol :

LHS

=\frac{\sec ^{2} \theta-\tan ^{2} \theta}{\sec \theta+\tan \theta}=\frac{(\sec \theta-\tan \theta)(\sec \theta+\tan \theta)}{\sec \theta+\tan \theta}

=\sec \theta-\tan \theta= R.H.S


Question 13

\frac{\sin ^{3} \theta+\cos ^{3} \theta}{\sin \theta+\cos \theta}+\sin \theta \cos \theta=1

Sol :

\frac{\sin ^{3} \theta+\cos ^{3} \theta}{\sin \theta+\cos \theta}+\sin \theta \times \cos \theta

a^{3}+b^{3}=(\mathrm{a}+\mathrm{b})\left(a^{2}-a b+b^{2}\right)

\frac{(\sin \theta+\cos \theta)\left(\sin ^{2} \theta-\sin \theta \times \cos \theta+\cos ^{2}\right)}{\sin \theta+\cos \theta}+\sin \theta \times \cos \theta

\sin ^{2} \theta-\sin \theta \times \cos \theta+\cos ^{2} \theta+\sin \theta \times \cos \theta

\sin ^{2} \theta+\cos ^{2} \theta-\sin \theta \times \cos \theta+\sin \theta \times \cos \theta

1-\sin \theta \times \cos \theta+\sin \theta \times \cos \theta

=1 RHS


Type II : LCM लेकर सर्वसमिकाओं को सिद्ध करने पर आधारित प्रश्न :

Question 14

निम्नलिखित सर्वसमिकाओं को सिद्ध करें :

(i) \sin \theta \cdot \cot \theta=\cos \theta

Sol :

LHS

\sin \theta \times \cot \theta

\sin \theta \times \frac{\cos \theta}{\sin \theta}=\cos \theta

RHS


(ii) \sin ^{2} \theta\left(1+\cot ^{2} \theta\right)=1

Sol :

LHS

\sin ^{2} \theta\left(1+\cot ^{2} \theta\right)

\sin ^{2} \theta \times \operatorname{cosec}^{2} \theta=(\sin \theta \times \operatorname{cosec} \theta)^{2}

(1)^{2}=1=RHS


(iii) \cos ^{2} \mathrm{~A}\left(\tan ^{2} \mathrm{~A}+1\right)=1

Sol :

LHS

\cos ^{2} A\left(\tan ^{2} A+1\right)

\cos ^{2} A \times \sec ^{2} A

(\cos A \times \sec A)^{2}

(1)^{2}=1 RHS


(iv) \tan ^{4} \theta+\tan ^{2} \theta=\sec ^{4} \theta-\sec ^{2} \theta

Sol :

LHS

\tan ^{4} \theta+\tan ^{2} \theta

\left(\tan ^{2} \theta\right)^{2}+\tan ^{2} \theta

\left(\sec ^{2} \theta-1\right)^{2}+\sec ^{2} \theta-1

\left(\sec ^{2} \theta\right)^{2}-2 \sec ^{2} \theta \times 1+(1)^{2}+\sec ^{2} \theta-1

\sec ^{4} \theta- 2\sec ^{2} \theta+1+\sec ^{2} \theta-1

\sec ^{4} \theta-\sec ^{4} \theta


(v) \frac{\left(1+\tan ^{2} \theta\right) \sin ^{2} \theta}{\tan \theta}=\tan \theta

Sol :

LHS

\frac{\left(1+\tan ^{2} \theta\right) \sin ^{2}}{\tan \theta}

\frac{\sec ^{2} \theta \times \sin ^{2} \theta}{\tan \theta}

\frac{\frac{1}{\cos ^{2} \theta} \times \sin ^{2} \theta}{\frac{\sin \theta}{\cos \theta}}

=\frac{1}{\cos \theta} \times \sin \theta=\frac{\sin \theta}{\cos \theta}=\tan \theta


(vi) \frac{\sin ^{2} \theta}{\cos ^{2} \theta}+1=\frac{\tan ^{2} \theta}{\sin ^{2} \theta}

Sol :

LHS

\frac{\sin ^{2} \theta}{\cos ^{2} \theta}+1

\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos ^{2} \theta}=\frac{1}{\cos ^{2} \theta}=\operatorname{sec}^{2} \theta

RHS

\frac{\tan ^{2} \theta}{\sin ^{2} \theta}=\frac{\sin ^{2} \theta}{\frac{\cos ^{2} \theta}{\sin ^{2} \theta}}

=\frac{1}{\cos ^{2} \theta}=\sec ^{2} \theta

LHS=RHS


(vii) \frac{3-4 \sin ^{2} \theta}{\cos ^{2} \theta}=3-\tan ^{2} \theta

Sol :

LHS

\frac{3-4 \sin ^{2} \theta}{\cos ^{2} \theta}

\frac{3}{\cos ^{2} \theta}-\frac{4 \sin ^{2} \theta}{\cos ^{2} \theta}

3 \sec ^{2} \theta-4 \tan ^{2} \theta

3 \tan ^{2} \theta-4 \tan ^{2} \theta

3-\tan ^{2} \theta R.H.S


(viii) \left(1+\tan ^{2} \theta\right) \cos \theta \cdot \sin \theta=\tan \theta

Sol :

LHS

\left(1+\tan ^{2} \theta\right) \cos \theta \cdot \sin \theta

\sec ^{2} \theta \times \cos \theta \times \sin \theta

\frac{1}{\cos ^{2} \theta} \times \cos \theta \times \sin \theta

\frac{\sin \theta}{\cos \theta}=\tan \theta 

R.H.S


(ix) \sin ^{2} \theta-\cos ^{2} \phi=\sin ^{2} \phi-\cos ^{2} \theta

Sol :

LHS

\sin ^{2} \theta-\cos ^{2} \phi

\left(1-\cos ^{2} \theta\right)-\left(1-\sin ^{2} \phi\right)

1- \cos ^{2} \theta-1+\sin ^{2} \phi

-\cos ^{2} \theta+\sin ^{2} \phi

\sin ^{2} \phi-\cos ^{2} \theta RHS


(x) \frac{1-\tan ^{2} \theta}{\cot ^{2} \theta-1}=\tan ^{2} \theta

Sol :

LHS

\frac{1-\tan ^{2} \theta}{\cot ^{2} \theta-1}

\frac{1-\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}{\frac{\cos ^{2}}{\sin ^{2}}-1}

\frac{\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\cos ^{2} \theta}}{\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\sin ^{2} \theta}}

\frac{\sin ^{2} \theta}{\cos ^{2} \theta}=\tan ^{2} \theta

RHS


Question 15

निम्नलिखित सर्वसमिकाओं को सिद्ध करें :

(i) (1-\cos \theta)(1+\cos \theta)\left(1+\cot ^{2} \theta\right)=1

Sol :

LHS

=(1-\cos \theta)(1+\cos \theta)\left(1+\cot ^{2} \theta\right)

=\left(1-\cos ^{2} \theta\right)\left(1+\cot ^{2} \theta\right)

=\sin ^{2} \theta \times \operatorname{cosec}^{2} \theta

=1


(ii) \frac{(1+\sin \theta)^{2}+(1-\sin \theta)^{2}}{2 \cos ^{2} \theta}=\frac{1+\sin \theta}{1-\sin ^{2} \theta}

Sol :

LHS

\frac{(1+\sin \theta)^{2}+(1-\sin \theta)^{2}}{2 \cos ^{2} \theta}

\frac{\left(1^{2}+\sin ^{2} \theta+2 \times 1 \times \sin \theta\right)+\left(1^{2}+\sin ^{2} \theta-2 \times 1 \times \sin \theta\right)}{2 \cos ^{2} \theta}

\frac{1+\sin ^{2} \theta+2 \sin \theta+1+\sin ^{2} \theta-2 \sin \theta}{2 \cos ^{2} \theta}

\frac{2+2 \sin ^{2} \theta}{2 \cos ^{2} \theta}=\frac{2\left(1+\sin ^{2} \theta\right)}{2\left(1-\sin ^{2} \theta\right)}

\frac{1-\sin ^{2} \theta}{1+\sin ^{2} \theta}

RHS


(iii) \frac{\cos ^{2} \theta(1-\cos \theta)}{\sin ^{2} \theta(1-\sin \theta)}=\frac{1+\sin \theta}{1+\cos \theta}

Sol :

LHS

\frac{\cos ^{2} \theta(1-\cos \theta)}{\sin ^{2} \theta(1-\sin \theta)}

\frac{\left(1-\sin ^{2} \theta\right)(1-\cos \theta)}{\left(1-\cos ^{2} \theta\right)(1-\sin \theta)}

\frac{(1-\sin \theta)(1+\sin )(1-\cos \theta)}{(1-\operatorname{cos} \theta)(1+\cos \theta)(1-\sin \theta)}

\frac{1+\sin \theta}{1+\cos \theta} RHS


(iv) (\sin \theta-\cos \theta)^{2}=1-2 \sin \theta \cdot \cos \theta

Sol :

LHS

(\sin \theta-\cos \theta)^{2}

\sin ^{2} \theta+\cos ^{2} \theta-2 \times \sin \theta \times \cos \theta

\sin ^{2} \theta+\cos ^{2} \theta-2 \sin \theta \times \cos \theta

1-2 \sin \theta \times \cos \theta

R.H.S 


(v) (\sin \theta+\cos \theta)^{2}+(\sin \theta-\cos \theta)^{2}=2

Sol :

LHS

(\sin \theta+\cos \theta)^{2}+(\sin \theta-\cos \theta)^{2}=2

\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \times \cos \theta+\sin ^{2} \theta+\cos ^{2} \theta-2 \sin \theta \times \cos \theta

\sin ^{2} \theta+\cos ^{2} \theta+\sin ^{2} \theta+\cos ^{2} \theta

2 \sin ^{2} \theta+2 \cos ^{2} \theta

2\left(\sin ^{2} \theta+\cos ^{2} \theta\right)

2×1=2 RHS


(vi) (a \sin \theta+b \cos \theta)^{2}+(a \cos \theta-b \sin \theta)^{2}=a^{2}+b^{2}

Sol :

LHS

(a \sin \theta+b \cos \theta)^{2}+(a \cos \theta-b \sin \theta)^{2}

(a \sin \theta)^{2}+(b \cos \theta)^{2}+2 \times a \sin \theta \times b \cos \theta+(a \cos \theta)^{2}+(b \sin \theta)^{2}-2 a \cos \theta \times b \sin \theta

a^{2} \times \sin ^{2} \theta+b^{2} \times \cos ^{2} \theta+2 a \sin \theta \times b \cos \theta+a^{2} \times \cos ^{2} \theta+b^{2} \times \sin ^{2} \theta-2 a \cos \theta \times b \sin \theta

a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta+a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta

\left(a^{2} \sin ^{2} \theta+a^{2} \cos ^{2} \theta\right)+\left(b^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta\right)

a^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+b^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)

a^{2} \times 1+b^{2} \times 1

a^{2}+b^{2}

RHS


(vii) \cos ^{4} A+\sin ^{4} A+2 \sin ^{2} A \cdot \cos ^{2} A=1

Sol :

LHS

\cos ^{4} A+\sin ^{4} A+2 \sin ^{2} A \times \cos ^{2} A

\left(\cos ^{2} A\right)^{2}-\left(\sin ^{2} A\right)^{2}+2 \sin ^{2} A \times \cos ^{2} A

\left(\cos ^{2} A+\sin ^{2} A\right) 2 \sin ^{2} A \times \cos ^{2} A

=(1)^{2}=1 RHS


(viii) \sin ^{4} A-\cos ^{4} A=2 \sin ^{2} A-1=1-2 \cos ^{2} A=\sin ^{2} A-\cos ^{2} A

Sol :

LHS

\sin ^{4} A-\cos ^{4} A

\left(\sin ^{2} A\right)^{2}-\left(\cos ^{2} A\right)^{2}

\left(\sin ^{2} A+\cos ^{2} A\right)\left(\sin ^{2} A-\cos ^{2} A\right)

=\sin ^{2} A-\cos ^{2} A

=\sin ^{2} A-\left(1-\sin ^{2} A\right)

=\sin ^{2} A-1+\sin ^{2} A

=2 \sin ^{2} A-1

=2\left(-\cos ^{2} A\right)-1

=2-2 \cos ^{2} A-1=1-2 \cos ^{2} A

=RHS


(ix) \cos ^{4} \theta-\sin ^{4} \theta=\cos ^{2} \theta-\sin ^{2} \theta=2 \cos ^{2} \theta-1

Sol :

LHS

\cos ^{4} \theta-\sin ^{4} \theta=\cos ^{2} \theta-\sin ^{2} \theta=2 \cos ^{2} \theta-1

\cos ^{4} \theta-\sin ^{4} \theta=\left(\cos ^{2} \theta\right)^{2}-\left(\sin ^{2} \theta\right)^{2}

\left(\cos ^{2} \theta+\sin ^{2} \theta\right)\left(\cos ^{2} \theta-\sin ^{2} \theta\right)

\cos ^{2} \theta-\sin ^{2} \theta

\cos ^{2} \theta-\left(1-\cos ^{2} \theta\right)

\cos ^{2} \theta-1+\cos ^{2} \theta

2 \cos ^{2} \theta-1

RHS


(x) 2 \cos ^{2} \theta-\cos ^{4} \theta+\sin ^{4} \theta=1

Sol :

LHS

2 \cos ^{2} \theta-\cos ^{4} \theta+\sin ^{4} \theta

2 \cos ^{2} \theta-\left(\cos ^{2} \theta\right)^{2}+\left(\sin ^{2} \theta\right)^{2}

2 \cos ^{2} \theta-\left(\cos ^{2} \theta+\sin ^{2} \theta\right)

2 \cos ^{2} \theta-\cos ^{2} \theta+\sin ^{2} \theta

2 \cos ^{2} \theta-\cos ^{2} \theta+1-\cos ^{2} \theta

2 \cos ^{2} \theta-2 \cos ^{2} \theta+1

0+1=1


(xi) 1-2 \cos ^{2} \theta+\cos ^{4} \theta=\sin ^{4} \theta

Sol :

LHS

1-2 \cos ^{2} \theta+\cos ^{4} \theta

1^{2}-2 \times 1 \times \cos ^{2} \theta+\left(\cos ^{2}\right)^{2}

\left(1-\cos ^{2} \theta\right)^{2}

\left(\sin ^{2} \theta\right)^{4}=\sin ^{4} \theta

RHS


(xii) 1-2 \sin ^{2} \theta+\sin ^{4} \theta=\cos ^{4} \theta

Sol :

LHS

1-2 \sin ^{2} \theta+\sin ^{4} \theta

1^{2}-2 \times 1 \times \sin ^{2} \theta+\left(\sin ^{2}\right)^{2}

\left(1-\sin ^{2} \theta\right)^{2}

\left(\cos ^{2} \theta\right)^{2}=\cos ^{4} \theta

RHS


Question 16

निम्नलिखित सर्वसमिकाओं को सिद्ध करें :

(i) \sec ^{2} \theta+\operatorname{cosec}^{2} \theta=\sec ^{2} \theta \cdot \operatorname{cosec}^{2} \theta

Sol :

LHS

\sec ^{2} \theta+\operatorname{cosec}^{2} \theta

\frac{1}{\cos ^{2} \theta}+\frac{1}{\sin ^{2} \theta}

\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos ^{2} \theta \times \sin ^{2} \theta}

\frac{1}{\cos ^{2} \theta \times \sin ^{2} \theta}

=\frac{1}{\frac{1}{\sec ^{2} \theta} \times \frac{1}{\operatorname{cosec}^{2} \theta}}

\sec ^{2} \theta \times \operatorname{cosec}^{2} \theta

RHS


(ii) \frac{\cos ^{2} \theta}{\sin \theta}+\sin \theta=\operatorname{cosec} \theta

Sol :

LHS

\frac{\cos ^{2} \theta}{\sin \theta}+\sin \theta

\frac{1-\sin ^{2} \theta}{\sin \theta}+\sin \theta

\frac{1}{\sin \theta}-\frac{\sin ^{2} \theta}{\sin \theta}+\sin \theta

\frac{1}{\sin \theta}-\sin \theta+\sin \theta

cosec θ

RHS


(iii) \cot \theta+\tan \theta=\operatorname{cosec} \theta \cdot \sec \theta

Sol :

LHS

\cot \theta+\tan \theta

\frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\cos \theta}

\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\sin \theta \times \cos \theta}

\frac{1}{\sin \theta \times \cos \theta}

\frac{1}{\frac{1}{\sin \theta} \times \frac{1}{\cos \theta}}

\operatorname{cosec} \theta \times \sec \theta

RHS


Question 17

\frac{1-\sin \theta}{1+\sin \theta}=\left(\frac{1-\sin \theta}{\cos \theta}\right)^{2}

Sol :

LHS

\frac{1-\sin \theta}{1+\sin \theta}

परिमेयकरण करने पर

\frac{1-\sin \theta}{1+\sin \theta} \times \frac{1-\sin \theta}{1-\sin \theta}

\frac{(1-\sin \theta)^{2}}{(1)^{2}-(\sin \theta)^{2}}

\frac{(1-\sin \theta)^{2}}{1-\sin ^{2} \theta}

\frac{(1-\sin \theta)^{2}}{\cos ^{2} \theta

\left(\frac{1-\sin \theta}{\cos \theta}\right)^{2}

RHS


Question 18

\frac{1-\cos \theta}{1+\cos \theta}=\left(\frac{1-\cos \theta}{\sin \theta}\right)^{2}

Sol :

LHS

\frac{1-\cos \theta}{1+\cos \theta}

परिमेयकरण करने पर

\frac{1-\cos \theta}{1+\cos \theta} \times \frac{1-\cos \theta}{1-\cos \theta}

\frac{(1-\cos \theta)^{2}}{(1)^{2}-(\cos \theta)^{2}}

\frac{(1-\cos \theta)^{2}}{1-\cos ^{2} \theta}

\frac{(1-\cos \theta)^{2}}{\sin ^{2} \theta}

\left(\frac{1-\cos \theta}{\sin \theta}\right)^{2} RHS


Question 19

\left(\frac{1+\cos \theta}{\sin \theta}\right)^{2}=\frac{1+\cos \theta}{1-\cos \theta}
Sol :

\left(\frac{1+\cos \theta}{\sin \theta}\right)^{2} 
\frac{(1+\cos \theta)^{2}}{\sin ^{2} \theta} 
\frac{(1+\cos \theta)^{2}}{1^{2}-\cos ^{2} \theta} 
\frac{(1-\cos \theta)^{2}}{(1+\cos \theta)(1-\cos \theta)} 
\frac{1+\cos \theta}{1-\cos \theta} R.H.S.

Question 20

\frac{\cos \theta}{1+\sin \theta}=\frac{1-\sin \theta}{\cos \theta}
Sol :
\frac{\cos \theta}{1+\sin \theta}
परिमेयकरण करने पर
\frac{\cos \theta}{1+\sin \theta} \times \frac{1-\sin \theta}{1-\sin \theta}
\frac{\cos \theta(1-\sin \theta)^{2}}{1^{2}-\sin ^{2} \theta}
\frac{\cos \theta(1-\cos \theta)^{2}}{\cos ^{2} \theta}
\frac{1-\sin \theta}{\cos \theta} RHS

1 comment:

Contact Form

Name

Email *

Message *