Exercise 8.4
Question 21
\left(\sin ^{8} \theta-\cos ^{8} \theta\right)=\left(\sin ^{2} \theta-\cos
^{2} \theta\right)\left(1-2 \sin ^{2} \theta \cdot \cos ^{2}
\theta\right)
Sol :
LHS
\left(\sin ^{8} \theta-\cos ^{8} \theta\right)
\left[\left(\sin ^{2} \theta\right)^{2}\right]^{2}-\left[\left(\cos ^{2} \theta\right)^{2}\right]^{2}
\left[\left(\sin ^{2} \theta\right)^{2}-\left(\cos ^{2} \theta\right)^{2}\right] \times\left[\left(\sin ^{2} \theta\right)^{2}+\left(\cos ^{2} \theta\right)^{2}\right]
\left[\left(\sin ^{2} \theta-\cos ^{2} \theta\right)\left(\sin ^{2} \theta+\cos ^{2} \theta\right)\right]\left[\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{2}-\right.\left.2 \sin ^{2} \theta \times \cos ^{2} \theta\right]
\left(\sin ^{2} \theta-\cos ^{2} \theta\right) \times 1\left[(1)^{2}-2 \sin ^{2} \theta \times \cos ^{2} \theta\right]
\left(\sin ^{2} \theta-\cos ^{2} \theta\right) \times\left(1-2 \sin ^{2} \theta \times \cos ^{2} \theta\right)
RHS
Question 22
2\left(\sin ^{6} \theta+\cos ^{6} \theta\right)-3\left(\sin ^{4}
\theta+\cos ^{4} \theta\right)+1=0
Sol :
LHS
=2\left(\sin ^{6} \theta+\cos ^{6} \theta\right)-3\left(\sin ^{4} \theta+\cos ^{4} \theta\right)+1
=\left[\left(\sin ^{2} \theta\right)^{3}+\left(\cos ^{2} \theta\right)^{3}\right]-3\left[\left(\sin ^{2} \theta\right)^{2}+\left(\cos ^{2} \theta\right)^{2}\right]+1
=2\left[\left(\sin ^{2} \theta+\cos ^{2} \theta\right)\left(\sin ^{2} \theta\right)^{2}-\sin ^{2} \theta \times \cos ^{2} \theta+\left(\cos ^{2} \theta\right)^{2}\right]-3\left[\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{2}-2 \sin ^{2} \theta \times \cos ^{2} \theta\right]+1
=2 \times 1\left[\left(\sin ^{2} \theta\right)^{2}+\left(\cos ^{2} \theta\right)^{2}-\sin ^{2} \theta \times \cos ^{2} \theta\right]-3 \times\left[(1)^{2}-2 \sin ^{2} \theta \times \cos ^{2} \theta\right]+1
=2\left[\left(\sin ^{2} \theta\right)^{2}+\left(\cos ^{2} \theta\right)^{2}-2 \sin ^{2} \theta \times \cos ^{2} \theta\right]-3\left[(1)^{2}-2 \sin ^{2} \theta \times \cos ^{2} \theta\right]+1
=2\left[\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{2}-2 \sin ^{2} \theta \times \cos ^{2} \theta-\sin ^{2} \theta \times \cos ^{2} \theta\right]-3\left[1-2 \sin ^{2} \theta \times \cos ^{2} \theta\right]+1
=2\left[(1)^{2}-2 \sin ^{2} \theta \times \cos ^{2} \theta-\sin ^{2} \theta \times \cos ^{2} \theta\right]-3\left[1-2 \sin ^{2} \theta \times \cos ^{2} \theta\right]+1
=2\left[1-3 \sin ^{2} \theta \times \cos ^{2} \theta\right]-3\left[1-2 \sin ^{2} \theta \times \cos ^{2} \theta\right]+1
=2-6 \sin ^{2} \theta \times \cos ^{2} \theta-3+6 \sin ^{2} \theta \times \cos ^{2} \theta+1
=2-3+1=3-3=0
Type-III : त्रिकोणमितीय व्यंजकों के वर्गमूल से सम्बद्ध सर्वसमिकाओं को
सिद्ध करने पर आधारित प्रश्न :
निम्नलिखित सर्वसमिकाओं को सिद्ध करें :
Question 23
\frac{\cos A}{1-\tan A}+\frac{\sin A}{1-\cot A}=\sin A+\cos A
Sol :
LHS
\frac{\cos \mathrm{A}}{1-\tan \mathrm{A}}+\frac{\sin \mathrm{A}}{1-\cot \mathrm{A}}
\frac{\cos \mathrm{A}}{1-\frac{\sin \mathrm{A}}{\cos \mathrm{A}}}+\frac{\sin \mathrm{A}}{1-\frac{\cos \mathrm{A}}{\sin \mathrm{A}}}
\frac{\cos \mathrm{A}}{\frac{\cos \mathrm{A}-\sin \mathrm{A}}{\cos \mathrm{A}}}+\frac{\sin \mathrm{A}}{\frac{\sin \mathrm{A}-\cos \mathrm{A}}{\sin \mathrm{A}}}
\frac{\cos ^{2} \mathrm{~A}}{\cos \mathrm{A}-\sin \mathrm{A}}+\frac{\sin ^{2} \mathrm{~A}}{\sin \mathrm{A}-\cos \mathrm{A}}
\frac{\cos ^{2} \mathrm{~A}}{\cos \mathrm{A}-\sin \mathrm{A}}-\frac{\sin ^{2} \mathrm{~A}}{\sin \mathrm{A}-\cos \mathrm{A}}
\frac{\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A}}{\cos \mathrm{A}-\sin \mathrm{A}}
\frac{(\cos \mathrm{A}-\sin \mathrm{A})(\cos \mathrm{A}+\sin \mathrm{A})}{\cos \mathrm{A}-\sin \mathrm{A}}
cos A+sin A
RHS
Question 24
\frac{\sin \theta}{1+\cos \theta}+\frac{1+\cos \theta}{\sin
\theta}=\frac{2}{\sin \theta}
Sol :
LHS
\frac{\sin \theta}{1+\cos \theta}+\frac{1+\cos \theta}{\sin \theta}
परिमेयकरण करने पर
\frac{\sin \theta}{1+\cos \theta} \times \frac{1-\cos \theta}{1-\cos \theta}+\frac{1+\cos \theta}{\sin \theta}
\frac{\sin \theta(1-\cos \theta)}{1^{2}+\cos ^{2} \theta}+\frac{1+\cos \theta}{\sin \theta}
\frac{\sin \theta(1-\cos \theta)}{\sin ^{2} \theta}+\frac{1+\cos \theta}{\sin \theta}
\frac{(1-\cos \theta)+1+\cos \theta}{\sin \theta}
\frac{2}{\sin \theta}
RHS
Question 25
\frac{1}{1+\sin \theta}+\frac{1}{1-\sin \theta}=2 \sec ^{2} \theta
Sol :
LHS
\frac{1}{1+\sin \theta}+\frac{1}{1-\sin \theta}
\frac{1-\sin \theta+1+\sin \theta}{(1+\sin \theta)(1-\sin \theta)}
\frac{2}{1^{2}-\sin ^{2} \theta}=\frac{2}{1-\sin ^{2} \theta}
\frac{2}{\cos ^{2} \theta}=2 \sec ^{2} \theta
Proved
Question 26
\frac{1+\sin \theta}{\cos \theta}+\frac{\cos \theta}{1+\sin \theta}=2
\sec \theta
Sol :
LHS
\frac{1+\sin \theta}{\cos \theta}+\frac{\cos \theta}{1+\sin \theta}
परिमेयकरण करने पर
\frac{1+\sin \theta}{\cos \theta}+\frac{\cos \theta}{1+\sin \theta} \times \frac{1-\sin \theta}{1-\sin \theta}
\frac{1+\sin \theta}{\cos \theta}+\frac{\cos \theta(1-\sin \theta)}{1^{2}-\sin ^{2} \theta}
\frac{1+\sin \theta}{\cos \theta}+\frac{\cos \theta(1-\sin \theta)}{1-\sin ^{2} \theta}
\frac{1+\sin \theta}{\cos \theta}+\frac{\cos \theta(1-\sin \theta)}{\cos ^{2} \theta}
\frac{1+\sin \theta}{\cos \theta}-\frac{1-\sin \theta}{\cos \theta}
\frac{1+\sin \theta+1-\sin \theta}{\cos \theta}
\frac{2}{\cos \theta}=2 \sec \theta
RHS
Question 27
\frac{\cos \theta}{1-\sin \theta}+\frac{\cos \theta}{1+\sin
\theta}=\frac{2}{\cos \theta}
Sol :
LHS
\frac{\cos \theta}{1+\sin \theta}+\frac{\cos \theta}{1-\sin \theta}
\frac{\cos \theta(1+\sin \theta)+\cos \theta(1-\sin \theta)}{(1-\sin \theta)(1+\sin \theta)}
\frac{\cos \theta+\cos \theta \times \sin \theta+\cos \theta-\cos \theta \times \sin \theta}{1^{2}-\sin ^{2} \theta}
\frac{2 \cos \theta}{1-\sin ^{2} \theta}+\frac{2 \cos \theta}{\cos ^{2} \theta}
\frac{2}{\cos \theta} proved
Question 28
\frac{1}{1+\cos \theta}+\frac{1}{1-\cos \theta}=\frac{2}{\sin ^{2}
\theta}
Sol :
LHS
\frac{1}{1+\cos \theta}+\frac{1}{1-\cos \theta}
\frac{1-\cos \theta+1+\cos \theta}{(1+\cos \theta)(1-\cos \theta)}
\frac{2}{1^{2}-\cos ^{2} \theta}=\frac{2}{1-\cos ^{2} \theta}
\frac{2}{\sin ^{2} \theta} proved
Question 29
\frac{1}{1-\sin \theta}-\frac{1}{1+\sin \theta}=\frac{2 \tan \theta}{\cos
\theta}
Sol :
LHS
\frac{1}{1-\sin \theta}+\frac{1}{1+\sin \theta}
\frac{1+\sin \theta-1-\sin \theta}{(1-\sin \theta)(1+\sin \theta)}
\frac{1+\sin \theta-1+\sin \theta}{1^{2}-\sin ^{2} \theta}
\frac{2 \sin \theta}{1-\sin ^{2} \theta}=\frac{2 \sin \theta}{\cos ^{2} \theta}
\frac{2 \sin \theta}{1-\sin ^{2} \theta} \times \frac{1}{\cos \theta}
\frac{2 \tan \theta}{1-\frac{1}{\cos \theta}}
\frac{2 \tan \theta}{\cos \theta} = proved
Question 30
\cot ^{2} \theta-\cos ^{2} \theta=\cot ^{2} \theta \cdot \cos ^{2}
\theta
Sol :
LHS
\cot ^{2} \theta-\cos ^{2} \theta
\frac{\cos ^{2} \theta}{\sin ^{2} \theta}-\cos ^{2} \theta
\cos ^{2} \theta\left[\frac{1}{\sin ^{2} \theta}-1\right]
\cos ^{2} \theta\left[\frac{1-\sin ^{2} \theta}{\sin ^{2} \theta}\right]
\cos ^{2} \theta\left[\frac{\cos ^{2} \theta}{\sin ^{2} \theta}\right]
\cos ^{2} \theta \times \cot ^{2} \theta proved
This is helpful for student .those student they are weak in math then they use these sites
ReplyDelete