Exercise 8.4
Question 31
\tan ^{2} \phi-\sin ^{2} \phi-\tan ^{2} \phi \cdot \sin ^{2} \phi=0
Sol :
LHS
\tan ^{2} \phi-\sin ^{2} \phi-\tan ^{2} \phi \times \sin ^{2} \phi
\frac{\sin ^{2} \phi}{\cos ^{2} \phi}-\sin ^{2} \phi-\frac{\sin ^{2} \phi}{\cos ^{2} \phi} \times \sin ^{2} \phi
\sin ^{2} \phi\left[\frac{1}{\cos ^{2} \phi}-1\right]-\frac{\sin ^{4} \phi}{\cos ^{2} \phi}
\sin ^{2} \phi\left[\frac{1-\cos ^{2} \phi}{\cos ^{2} \phi}\right]-\frac{\sin ^{4} \phi}{\cos ^{2} \phi}
\sin ^{2} \phi\left[\frac{\sin ^{2} \phi}{\cos ^{2} \phi}\right]-\frac{\sin ^{4} \phi}{\cos ^{2} \phi}
\frac{\sin ^{4} \phi}{\cos ^{2} \phi}-\frac{\sin ^{4} \phi}{\cos ^{2} \phi}
=0 proved
Question 32
\tan ^{2} \phi+\cot ^{2} \phi+2=\sec ^{2} \phi \cdot
\operatorname{cosec}^{2} \phi
Sol :
LHS
\tan ^{2} \phi+\cot ^{2} \phi+2
\sin ^{2} \phi-1+\operatorname{cosec}^{2} \phi-1+2
\frac{1}{\cos ^{2} \phi}-1+\frac{1}{\sin ^{2} \phi}-1+2
\frac{1}{\cos ^{2} \phi}+\frac{1}{\sin ^{2} \phi}-\not 2+\not 2
\frac{\sin ^{2} \phi+\cos ^{2} \phi}{\cos ^{2} \phi \cdot \sin ^{2} \phi}=\frac{1}{\cos ^{2} \phi \cdot \sin ^{2} \phi}
\sin ^{2} \phi \times \operatorname{cosec}^{2} \phi proved
Question 33
\frac{\operatorname{cosec} \theta+\cot \theta-1}{\cot
\theta-\operatorname{cosec} \theta+1}=\frac{1+\cos \theta}{\sin \theta}
Sol :
\frac{\operatorname{cosec} \theta+\cot \theta-1}{\cot \theta-\operatorname{cosec} \theta+1}
\frac{\operatorname{cosec} \theta+\cot \theta-\left(\operatorname{cosec}^{2} \theta-\cot ^{2} \theta\right)}{\cot \theta-\operatorname{cosec} \theta+1}
\frac{(\operatorname{cosec} \theta+\cot \theta)-(\operatorname{cosec} \theta-\cot \theta) \times(\operatorname{cosec} \theta+\cot \theta)}{1-\operatorname{cosec} \theta+\cot \theta}
\frac{(\operatorname{cosec} \theta+\cot \theta) \times[1-(\operatorname{cosec} \theta-\cot \theta)]}{1-\operatorname{cosec} \theta+\cot \theta}
\frac{(\operatorname{cosec} \theta+\cot \theta) \times(1-\operatorname{cosec} \theta+\cot \theta)}{1-\operatorname{cosec} \theta+\cot \theta}
=\operatorname{cosec} \theta+\cot \theta
=\frac{1}{\sin \theta}+\frac{\cos \theta}{\sin \theta}
=\frac{1+\cos \theta}{\sin \theta}= proved
Question 34
\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\tan
\theta+\cot \theta
Sol :
LHS
\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}
\frac{\frac{\sin \theta}{\cos \theta}}{1-\frac{\cos \theta}{\sin \theta}}+\frac{\frac{\cos \theta}{\sin \theta}}{1-\frac{\sin \theta}{\cos \theta}}
\frac{\frac{\sin \theta}{\cos \theta}}{\frac{\sin \theta-\cos \theta}{\sin \theta}}+\frac{\frac{\cos \theta}{\sin \theta}}{\frac{\cos \theta-\sin \theta}{\cos \theta}}
\frac{\sin ^{2} \theta}{\cos \theta(\sin \theta-\cos \theta)}+\frac{\cos ^{2} \theta}{\sin \theta(\cos \theta-\sin \theta)}
\frac{\sin ^{2} \theta}{\cos \theta(\sin \theta-\cos \theta)}-\frac{\cos ^{2} \theta}{\sin \theta(\sin \theta-\cos \theta)}
\frac{\sin ^{2} \theta-\cos ^{2} \theta}{\cos \theta \sin \theta(\sin \theta-\cos \theta)}
\frac{(\sin \theta-\cos \theta) \times\left(\sin ^{2} \theta+\cos ^{2} \theta+\sin \theta \times \cos \theta\right)}{\cos \theta \times \cot \theta(\sin \theta-\cos \theta)}
\frac{\sin \theta \times \cos \theta+\sin ^{2} \theta+\cos ^{2} \theta}{\cos \theta \times \sin \theta}
\frac{\sin \theta \times \cos \theta}{\cos \theta \times \sin \theta}+\frac{\sin ^{2} \theta}{\cos \theta \times \sin \theta}+\frac{\cos ^{2} \theta}{\cos \theta \times \sin \theta}
1+\tan \theta+\cot \theta proved
Question 35
\frac{1-\cos \theta}{1+\cos \theta}=(\cot \theta-\operatorname{cosec}
\theta)^{2}
Sol :
LHS
\frac{1-\cos \theta}{1+\cos \theta}
परिमेयकरण करने पर
\frac{1-\cos \theta}{1+\cos \theta} \times \frac{1-\cos \theta}{1-\cos \theta}
\frac{(1-\cos \theta)^{2}}{1^{2}-\cos ^{2} \theta}
\frac{(1-\cos \theta)^{2}}{1-\cos ^{2} \theta}=\frac{(1-\cos \theta)^{2}}{\sin ^{2} \theta}
\left(\frac{1-\cos \theta}{\sin \theta}\right)^{2}
\left(\frac{1-\cos \theta}{\sin \theta}-\frac{\cos \theta}{\sin \theta}\right)^{2}
=(\cos \theta-\operatorname{cosec} \theta)^{2}
निम्नलिखित सर्वसमिकाओं को सिद्ध करें :
Question 36
\sqrt{\frac{1-\cos \theta}{1+\cos \theta}}=\frac{1-\cos \theta}{\sin
\theta}
Sol :
LHS
\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}
परिमेयकरण करने पर
\sqrt{\frac{1+\cos \theta}{1-\cos \theta} \times \frac{1+\cos \theta}{1+\cos \theta}}
\sqrt{\frac{(1+\cos \theta)^{2}}{1^{2}-\cos ^{2} \theta}}
\sqrt{\frac{(1+\cos \theta)^{2}}{1-\cos ^{2} \theta}}
\sqrt{\frac{(1+\cos \theta)^{2}}{\sin ^{2} \theta}}
\sqrt{\left(\frac{1+\cos \theta}{\sin \theta}\right)^{2}}
\frac{1+\cos \theta}{\sin \theta}=Proved
Question 37
\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}=\frac{\cos \theta}{1+\sin
\theta}
Sol :
LHS
\sqrt{\frac{1-\cos \theta}{1+\cos \theta}}
परिमेयकरण करने पर
\sqrt{\frac{1-\cos \theta}{1+\cos \theta} \times \frac{1-\cos \theta}{1-\cos \theta}}
\sqrt{\frac{(1-\cos \theta)^{2}}{1^{2}-\cos ^{2} \theta}}
\sqrt{\frac{(1-\cos \theta)^{2}}{1-\cos ^{2} \theta}}
\sqrt{\frac{(1-\cos \theta)^{2}}{\sin ^{2} \theta}}
\sqrt{\left(\frac{1-\cos \theta}{\sin \theta}\right)^{2}}
\frac{1-\cos \theta}{\sin \theta}= proved
Question 38
\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}=\sec \theta-\tan \theta
Sol :
LHS
\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}
परिमेयकरण करने पर
\sqrt{\frac{1-\sin \theta}{1+\sin \theta}} \times \frac{1-\sin \theta}{1-\sin \theta}
\sqrt{\frac{(1-\sin \theta)^{2}}{1^{2}+\sin ^{2} \theta}}=\sqrt{\frac{(1-\sin \theta)^{2}}{1+\sin ^{2} \theta}}
\sqrt{\frac{(1-\sin \theta)^{2}}{\cos ^{2} \theta}}=\sqrt{\left(\frac{1-\sin \theta}{\cos \theta}\right)^{2}}
\frac{1-\sin \theta}{\cos \theta}=\frac{1}{\cos \theta}-\frac{\sin \theta}{\cos \theta}
\sec \theta-\tan \theta=RHS
Question 39
\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}=\frac{\cos \theta}{1+\sin
\theta}
Sol :
LHS
\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}
अंश का परिमेयकरण करने पर
\sqrt{\frac{1-\sin \theta}{1+\sin \theta} \times \frac{1+\sin \theta}{1+\sin \theta}}
\sqrt{\frac{1^{2}-\sin ^{2} \theta}{(1+\sin \theta)^{2}}}=\sqrt{\frac{1-\sin ^{2} \theta}{(1+\sin \theta)^{2}}}
\sqrt{\frac{\cos ^{2} \theta}{(1+\sin \theta)^{2}}}=\sqrt{\left(\frac{\cos \theta}{1+\sin \theta}\right)^{2}}
\frac{\cos \theta}{1+\sin \theta}=\text { R.H.S. }
Question 40
\sqrt{\frac{1+\sin \theta}{1-\sin \theta}}+\sqrt{\frac{1-\sin
\theta}{1+\sin \theta}}=2 \sec \theta
Sol :
LHS
\sqrt{\frac{1+\sin \theta}{1-\sin \theta}}+\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}
\frac{\sqrt{1+\sin \theta}}{\sqrt{1-\sin \theta}}+\frac{\sqrt{1-\sin \theta}}{\sqrt{1+\sin \theta}}
\frac{(\sqrt{1+\sin \theta})^{2}+(\sqrt{1-\sin \theta})^{2}}{(\sqrt{1-\sin \theta})(\sqrt{1+\sin \theta})}
\frac{(1+\sin \theta)+(1-\sin \theta)}{(\sqrt{1-\sin \theta})(\sqrt{1+\sin \theta})}
\frac{1+\sin \theta+1-\sin \theta}{\sqrt{1^{2}-\sin ^{2} \theta}}
\frac{2}{\sqrt{1-\sin ^{2} \theta}}=\frac{2}{\cos \theta}
2 \times \frac{1}{\cos \theta}=2 \sec \theta=proved
No comments:
Post a Comment