Exercise 27.1
Type-1 : दो सदिशों के सदिश गुणन पर आधारित प्रश्न :
Question 1
यदि दो सदिश \vec{a} और \vec{b} इस प्रकार हैं कि |\vec{a}|=2,|\vec{b}|=7 तथा \vec{a} \times \vec{b}=3 \hat{i}+2 \hat{j}+6 \hat{k} तों \vec{a} और \vec{b} के बीच का कोण ज्ञात करे।
[If \vec{a} and \vec{b} are two vectors such that |\vec{a}|=2,|\vec{b}|=7 and \vec{a} \times \vec{b}=3 \hat{i}+2 \hat{j}+6 \hat{k}, find the angle between \vec{a} and \vec{b} ]]
Sol :
Given |\vec{a}|=2,| \vec{b} |=7 and \vec{a} \times \vec{b}=3 \hat{i}+2 \hat{j}+6 \hat{k}
∵ \vec{a} \times \vec{b}=3 \hat{i}+2 \hat{3}+6 \hat{k}
∴ |\vec{a} \times \vec{b}|=\sqrt{3^{2}+2^{2}+6^{2}}=\sqrt{49}=7
Let θ be the angle between \vec{a}\text{ and } \vec{b}
Now ,
\sin \theta=\frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|}=\frac{7}{2 \times 7}=\frac{1}{2}
\sin \theta=\frac{1}{2} \Rightarrow \sin \theta=\sin \frac{\pi}{6}
∴ \theta=\frac{\pi}{6}
Hence , the angle between \vec{a} and \vec{b}=\frac{\pi}{6}
Given : |\vec{a}|=10 ,|\vec{b}|=2 and \vec{a} \cdot \vec{b}=12
Let θ be the angle between \vec{a} and \vec{b}
∴ \vec{a} \cdot \vec{b}=abcosθ
12=10×2cosθ
\Rightarrow \cos \theta=\frac{12}{20}=\frac{3}{5}
∵ \vec{a} \times \vec{b}=3 \hat{i}+2 \hat{3}+6 \hat{k}
∴ |\vec{a} \times \vec{b}|=\sqrt{3^{2}+2^{2}+6^{2}}=\sqrt{49}=7
Let θ be the angle between \vec{a}\text{ and } \vec{b}
Now ,
\sin \theta=\frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|}=\frac{7}{2 \times 7}=\frac{1}{2}
\sin \theta=\frac{1}{2} \Rightarrow \sin \theta=\sin \frac{\pi}{6}
∴ \theta=\frac{\pi}{6}
Hence , the angle between \vec{a} and \vec{b}=\frac{\pi}{6}
Question 2
दिया है, |\vec{a}|=10,|\vec{b}|=2 तथा \vec{a} \cdot \vec{b}=12 तो |\vec{a} \times \vec{b}| निकालें ।
Given |\vec{a}|=10,|\vec{b}|=2 and \vec{a} \cdot \vec{b}=12, find |\vec{a} \times \vec{b}|.]
Sol :Given : |\vec{a}|=10 ,|\vec{b}|=2 and \vec{a} \cdot \vec{b}=12
Let θ be the angle between \vec{a} and \vec{b}
∴ \vec{a} \cdot \vec{b}=abcosθ
12=10×2cosθ
\Rightarrow \cos \theta=\frac{12}{20}=\frac{3}{5}
\Rightarrow \sin \theta =\sqrt{1-\cos ^2 \theta}
=\sqrt{1-{\left(\frac{3}{5}\right)}^2}
=\sqrt{1-\frac{9}{25}}=\sqrt{\frac{25-9}{25}}
\Rightarrow \sin \theta=\frac{4}{5}Now , \vec{a} \times \vec{b}=a b \sin \theta \hat{n}
=10 \times 2 \times \dfrac{3}{5} \hat{n}
\vec{a} \times \vec{b}=16 \hat{n}
|\vec{a} \times \vec{b}|=16
Question 3
\vec{a} \cdot \vec{b} ज्ञात करें यदि |\vec{a}|=2,|\vec{b}|=5,|\vec{a} \times \vec{b}|=8.
[Find \vec{a} \cdot \vec{b} if |\vec{a}|=2,|\vec{b}|=5,|\vec{a} \times \vec{b}|=8 .]
Sol :Given : |\vec{a}|=2 \quad|\vec{b}|=5 and |\vec{a} \times \vec{b}|=8
Let θ be the angle between \vec{a} and \vec{b}
Now , |\vec{a} \times \vec{b}|=|\vec{a}|.|\vec{b} | \sin \theta= 8
\sin \theta=\frac{8}{|\overrightarrow{a}||\overrightarrow{b}|}=\frac{8}{2 \times 5}=\frac{4}{5}
\cos \theta=\frac{3}{5}
∴ \vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta =\left(2 \times 5 \times \frac{3}{5}\right)=6
Question 4
दो सदिश \vec{a} और \vec{b} इस प्रकार हैं कि |\vec{a}|=5,|\vec{b}|=4 तथा |\vec{a} \cdot \vec{b}|=10 तो \vec{a} और \vec{b} के बीच का कोण ज्ञात करें तथा उससे |\vec{a} \times \vec{b}| ज्ञात करें।
[If \vec{a} and \vec{b} are two vectors such that |\vec{a}|=5,|\vec{b}|=4 and |\vec{a} \cdot \vec{b}|=10, find the angle between \vec{a} and \vec{b} and hence find |\vec{a} \times \vec{b}|.]
Sol :Given : |\vec{a}|=5 , |\vec{b}|=4 and \vec{a} \cdot \vec{b}=10
Let θ be the angle between \vec{a} and \vec{b}
Now , \vec{a} \cdot \vec{b}=a b \cos \theta
10=5×4.cosθ
\Rightarrow \cos \theta=\frac{10}{20}=\frac{1}{2}
\Rightarrow \cos \theta=\cos \frac{\pi}{3}
\Rightarrow \theta=\frac{\pi}{3}
also , \vec{\alpha} \times \vec{b}=a b \sin \theta \hat{n}
=5 \times 4 \times \frac{\sqrt{3}}{2} \hat{n}=10 \sqrt{3} \hat{n}
| \vec{a} \times \vec{b} |=10 \sqrt{3}
Question 5
तोन सदिश \vec{a}, \vec{b}, \vec{c} इस प्रकार हैं कि \vec{a} \times \vec{b}=\vec{c}, \vec{b} \times \vec{c}=\vec{a}. सिद्ध करें कि \vec{a}, \vec{b}, \vec{c} परस्पर लम्ब हैं तथा |\vec{b}|=1,|\vec{c}|=|\vec{a}|
[\vec{a}, \vec{b}, \vec{c} are three vectors such that \vec{a} \times \vec{b}=\vec{c}, \vec{b} \times \vec{c}=\vec{a}. Prove that \vec{a}, \vec{b}, \vec{c} are mutually at right angles and |\vec{b}|=1,|\vec{c}|=|\vec{a}|.
Sol :Given : \vec{a} \times \vec{b}=\vec{c} , \vec{b} \times \vec{c}=\vec{a}
Now , |\vec{a} \times \vec{b}|=|\vec{c}| , |\vec{b} \times \vec{c}|=|\vec{a}|
We know that
|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \theta..(i)
|\vec{b} \times \vec{c}|=|\vec{b}||\vec{c}| \sin \theta..(ii)
From equation (i)
\sin \theta=\frac{|\overrightarrow{a} \times \vec{b}|}{|\vec{a}||\vec{b}|}..(iii)
From equation (ii)
\sin \theta=\frac{|\vec{b} \times \vec{c}|}{|\vec{b}||\vec{c}|}..(iv)
On comparing equation (iii) and (iv) , we got
\sin \theta=\frac{|\overrightarrow{a} \times \vec{b}|}{|\vec{a}||\vec{b}|}=\sin \theta=\frac{|\vec{b} \times \vec{c}|}{|\vec{b}||\vec{c}|}
⇒ \frac{|\vec{c}|}{|\vec{a}| | \vec{b}|}=\frac{|\vec{a}|}{|\vec{b}|| \vec{c} |}
⇒ |\vec{c}|^{2}=|\vec{a}|^{2}
⇒ |\vec{c}|=|\vec{a}|
∵ |\vec{c}|=|\vec{a} |
∴|\vec{b}|=1
This condition is possible only when angle i.e. θ between the vectors \vec{a}, \vec{b}, \vec{c} \text { is } 90^{\circ}
∴ So, these vectors ate mutually perpendicular to each other
proved
TYE-II : \hat{i}, \hat{j}, \hat{k} के पदों में व्यक्त सदिशों के सदिश गुणनफल पर आधारित प्रश्न :
Question 6
\vec{a} \times \vec{b} तथा |\vec{a} \times \vec{b}| ज्ञात करें यदि [Find \vec{a} \times \vec{b} and |\vec{a} \times \vec{b}| if ]
(i) \vec{a}=2 \hat{i}+\hat{j}+3 \hat{k} तथा (and) \vec{b}=3 \hat{i}+5 \hat{j}-2 \hat{k}
(ii) a=\hat{i}-7 \hat{j}+7 \hat{k} तथा (and) \vec{b}=3 \hat{i}-2 \hat{j}+2 \hat{k}
Sol :
(i) \vec{a}=2 \hat{\jmath}+\hat{j}+3 \hat{k}, \vec{b}=3 \hat{\imath}+5 \hat{j}-2 \hat{k}
\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 3 \\ 3 & 5 & -2\end{array}\right|
\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 3 \\ 3 & 5 & -2\end{array}\right|
=\hat{i}\left|\begin{array}{cc}1 & 3 \\ 5 & -2\end{array}\right|-\hat{j}\left|\begin{array}{cc}2 & 3 \\ 3 & -2\end{array}\right|+\hat{k}\left|\begin{array}{cc}2 & 1 \\ 3 & 5\end{array}\right|
=\hat{i}(-2-15)-\hat{j}(-4-9)+\hat{k}(10-3)
\vec{a} \times \vec{b}=-17 \hat{i}+13 \hat{j}+7 \hat{k}
\begin{aligned}|\vec{a} \times \overrightarrow{b}| &=\sqrt{(-17)^{2}+(13)^{2}+7^{2}} \\ &=\sqrt{289+169+49}\\&=\sqrt{507}\end{aligned}
Question 7
यदि \vec{a}=2 \hat{i}-\hat{j}+\hat{k} तथा \vec{b}=3 \hat{i}+4 \hat{j}-\hat{k} तो सिद्ध करें कि \vec{a} \times \vec{b} एक सदिश है जो \vec{a} और \vec{b} दोनों पर लम्ब है ।
If \vec{a}=2 \hat{i}-\hat{j}+\hat{k} and \vec{b}=3 \hat{i}+4 \hat{j}-\hat{k}, prove that \vec{a} \times \vec{b} represents a vector which is perpendicular to both \vec{a} and \vec{b}.]
Sol :
\vec{a}=2 \hat{i}-\hat{\jmath}+\hat{k},\vec{b}=3 \hat{\imath}+4 \hat{\jmath}-\hat{k}
\vec{a} \times \vec{b}=\left|\begin{array}{rrr}\hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 1 \\ 3 & 4 & -1\end{array}\right|
=\hat{i}\left|\begin{array}{cc}-1 & 1 \\ 4 & -1\end{array}\right|-\hat{j}\left|\begin{array}{cc}2 & 1 \\ 3 & -1\end{array}\right|+\hat{k}\left|\begin{array}{cc}2 & -1 \\ 3 & 4\end{array}\right|
=\hat{i}(1-4)-\hat{j}(-2-3)+\hat{k}(8+3)
\vec{a} \times \vec{b}=-3 \hat{i}+5 \hat{j}+11 \hat{k}
\vec{a} \cdot(\vec{a} \times \vec{b})=(2 \hat{i}-\hat{\jmath}+\hat{k}) \cdot\left(-3 \hat{i}+5 \hat{j}+11 \hat{k}\right)
=-6-5+11=0
\vec{b} \cdot(\vec{a} \times \vec{b})=(3 \hat{i}+4 \hat{i}-\hat{k}) \cdot(-3 \hat{i}+5 \hat{j}+11 \hat{k})=-9+20-11=0
अतः \vec{a} \times \vec{b} एक सदिश है, जो \vec{a} तथा \vec{b} दोनो पर लंब है।
Question 8
यदि \vec{a}=7 \hat{i}+3 \hat{j}-5 \hat{k}, \vec{b}=2 \hat{i}+5 \hat{j}-\hat{k} तथा \vec{c}=-\hat{i}+2 \hat{j}+4 \hat{k} तो (\vec{a}-\vec{b}) \times(\vec{c}-\vec{b}) ज्ञात करें ।
Sol :
\vec{a}=7 \hat{i}+3 \hat{j}-5 \hat{k}, \vec{b}=2 \hat{i}+5 \hat{j}-\hat{k}, \vec{c}=-\hat{i}+2 \hat{j}+4 \hat{k}
\vec{a}-\vec{b}=5 \hat{i}-2 \hat{j}-4 \hat{k} , \vec{c}-\vec{b}=-3 \hat{i}-3 \hat{j}+5 \hat{k}
(\vec{a}-\vec{b}) \times(\vec{c}-\vec{b})=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 5 & -2 & -4 \\ -3 & -3 & 5\end{array}\right|
=\hat{i}\left|\begin{array}{cc}-2 & -4 \\ -3 & 5\end{array}\right|-\hat{j}\left|\begin{array}{cc}5 & -4 \\ -3 & 5\end{array}\right|+\hat{k}\left|\begin{array}{cc}5 & -2 \\ -3 & -3\end{array}\right|
=\hat{i}(-10-12)-\hat{\jmath}(25-12)+\hat{k}(-15-6)
=-22\hat{i}-13\hat{j}-21 \hat{k}
Question 9
सदिरा \overrightarrow{\mathrm{A}} और \overrightarrow{\mathrm{B}} प्राप्त होते हैं। सदिश \overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}} का परिमाण तथा इसकी दिक्-कोज्याएँ ज्ञात करें।
Sol :
\vec{A}=\hat{i}-\hat{k}, \vec{B}=-\hat{i}+\hat{j}+\hat{k}
\vec{A} \times \vec{B}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 0 & -1 \\ -1 & 1 & 1\end{array}\right|
=\hat{\imath}\left|\begin{array}{ll}0 & -1 \\ 1 & 1\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right|+\hat{k}\left|\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right|
=\hat{\imath}(0+1)-\hat{j}(1-1)+\hat{k}(1+0)
\vec{A} \times \vec{B}=\hat{i}+\hat{k}
|\vec{A} \times \vec{B}|=\sqrt{1^{2}+1^{2}}= \sqrt{2}
माना \hat{C}, \vec{A} \times \vec{B} का इकाई सदिश है।
=\frac{1}{\sqrt{2}}(\hat{i}+\hat{k})=\frac{1}{\sqrt{2}} \hat{i}+\frac{1}{\sqrt{2}} \hat{k}
दिक् कोज्याएँ : \frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}
Question 10
यदि \overrightarrow{\mathrm{A}}=2 \hat{i}-3 \hat{j}+\hat{k} तथा \overrightarrow{\mathrm{B}}=3 \hat{i}+2 \hat{j} तो \overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}} और \overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}} निकालें ।
Sol :
\vec{A}=2 \hat{i}-3 \hat{j}+\hat{k}, \vec{B}=3 \hat{i}+2 \hat{j}
\vec{A} \cdot \vec{B}=6-6=0
\vec{A} \times \vec{B}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & -3 & 1 \\ 3 & 2 & 0\end{array}\right|
=\hat{i}\left|\begin{array}{rr}-3 & 1 \\ 2 & 0\end{array}\right|+\hat{j}\left|\begin{array}{cc}2 & 1 \\ 3 & 0\end{array}\right|+\hat{k}\left|\begin{array}{cc}2 & -3 \\ 3 & 2\end{array}\right|
=\hat{i}(0-2)-\hat{j}(0-3)+\hat{k}(4+9)
\vec{A} \times \vec{B}=-2 \hat{\imath}+3 \hat{\jmath}+13 \hat{k}
Hii
ReplyDeletePlease vector aur 3d jaldi se banaye
ReplyDeletePlease jaldi banaiye exam aa gaya
ReplyDeleteKc siha ka all cheptet nahi diya hai class 12th ka
ReplyDeleteHi
ReplyDeleteHii
ReplyDelete