Exercise 27.1
Question 31
\vec{a}, \vec{b}, \vec{c} शून्येत्तर सदिश हैं । यदि \vec{a} \times \vec{b}=\vec{a} \times \vec{c} तथा \vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c} तो दिखाएँ कि \vec{b}=\vec{c}.
Sol :
\begin{aligned} \vec{a} \times \vec{b}=\vec{a} & \times \vec{c} \\ \vec{a} \times \vec{b}-\vec{a} \times \vec{c} &=\overrightarrow{0} \\ \vec{a} \times(\vec{b}-\vec{c}) &=\vec{b} \end{aligned}
\vec{b}-\vec{c} =\vec{o} (\because \vec{a} \neq \vec{b})
\vec{b}=\vec{c} का \vec{a} \|(\vec{b}-\vec{c})
CASE-I
\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}
\vec{a} \cdot \vec{b}-\vec{a} \cdot \vec{c}=0
\vec{a} \cdot(\vec{b}-\vec{c})=0 (\because \vec{a} \neq \vec{o})
\vec{b}-\vec{c}=0
\vec{b}=\vec{c} या \vec{a} \perp(\vec{b}-\vec{c})
\therefore \vec{b}=\vec{c}
Question 32
निम्नलिखित का मान ज्ञात करें [Find the value of]
(i) |(\hat{i}+\hat{j}) \times(\hat{i}+2 \hat{j}+\hat{k})|
Sol :
(\hat{i}+\hat{j}) \times(\hat{\imath}+2 \hat{\jmath}+\hat{k})=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 0 \\ 1 & 2 & 1\end{array}\right|
=\hat{\imath}\left|\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right|-\hat{j}\left|\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right|+\hat{k}\left|\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right|
=\hat{i}(1-0)-\hat{j}(1-0)+\hat{k}(2-1)
=\hat{i}-\hat{\jmath}+\hat{k}
|(\hat{i}+\hat{j}) \times(\hat{i}+2 \hat{\jmath}+\hat{k})|
=\sqrt{1^{2}+(-1)^{2}+1^{2}}=\sqrt{1+1+1}=\sqrt{3}
(ii) |(3 \hat{i}+\hat{j}) \times(2 \hat{i}-\hat{j})|
Sol :
Question 33
(i) |\hat{i} \times(\hat{i}+\hat{j}+\hat{k})|
Sol :
|\hat{i} \times(\hat{i}+\hat{j}+\hat{k})|=|\hat{i} \times \hat{i}+\hat{j} \times \hat{j}+\hat{i} \times \hat{k}|
=|\overrightarrow{0}+\hat{k}-\hat{j}|
=|\hat{k}-\hat{j}|
=\sqrt{1^{2}+(-1)^{2}}=\sqrt{1+1}=\sqrt{2}
(ii) |\hat{i} \times \hat{j}|+|\hat{j} \times \hat{k} \mid.
Question 34
=2 \vec{a} \times \vec{a}+4 \vec{a} \times \vec{b}-\vec{b} \times \vec{a}-2 \vec{b} \times \vec{b}
=2(\vec{0})+4 \vec{a} \times \vec{b}+\vec{a} \times \vec{b}-2(\vec{0})
=5 \vec{a} \times \vec{b}
No comments:
Post a Comment