KC Sinha Solution Class 12 Chapter 2 Functions ( फलन ) Exercise 2.2 (Q1-Q15)

 Exercise 2.2

Question 1

If the functions f and g are given by

$\begin{aligned}&f=\{(1,2),(3,5),(4,1)\} \\&g=\{(2,3),(5,1),(1,3)\}\end{aligned}$

then define fog and gof

Sol :



Question 2

Let $A=\{1,2,3\}, B=\{4,5\}, C=\{5,6\}$.

Let $f: A \rightarrow B, g: B \rightarrow C$ be defined by $f(1)=4, f(2)=5, f(3)=4$, $g(4)=5, g(5)=6$ Find gof : $A \rightarrow C$.

Sol :


Question 3

Let the functions f and g be given by $f=\{(1,-1),(2,-4),(3,-9)\}$ and $g=\{(-1,3),(-4,7),(-9,11)\}$. Show that gof is defined while fog is not defined, Also find gof

Sol :



Question 4

Let $f: \mid a, c, d\} \rightarrow\{a, b, e\}$ and $g:\{a, b, e\} \rightarrow\{a, c\}$ be given by $f=\{(a, b),(c, e),(d, a)\}$ and $g=\{(a, c),(b, c),(e, a)\}$ write down

(i) gof

(ii) fog

Sol :



Question 5

Let $A=\{a, b, c, d\}, B=\{p, q, r, s\}, C=\{x, y, z\}$

Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be defined as

$f(a)=p, f(b)=q, f(c)=r, f(d)=s$

and $g(p)=x, g(q)=x, g(r)=y, g(s)=z$

Find gof $: A \rightarrow C$

Sol :


Question 6

Let $f:\{2,3,4,5\} \rightarrow\{3,4,5,9\}$ and

$g:\{3,4,5,9\} \rightarrow\{7,11,15\}$ be functions defined as

$f(2)=3, f(3)=4, f(4)=f(5)=5$

and $g(3)=g(4)=7$ and $g(5)=g(9)=11$.

Find gof.

Sol :



Question 7

If $f: R \rightarrow R$ and $g: R \rightarrow R$ are given by $f(x)=\cos x$ and $g(x)=3 x^{2}$, find gof and fog and show that gof ≠ fog

Sol :


Question 8

If $f(x)=8 x^{3}$ and $g(x)=x^{1 / 3}$, find $g o f$ and $f o g$.



Question 9

Let $f: R \rightarrow R$ and $g: R \rightarrow R$ be defined by $f(x)=x^{2}+2 x-3, g(x)=3 x-4$, find $(g o f)(x)$ and $(f o g)(x)$.


Question 10

Let $R$ be the set of all real numbers. If the functions $f: R \rightarrow R$ and $g: R \rightarrow R$ are given by $f(x)=x^{2}+x+1$ and $g(x)=2 x$ for all $x \in R$, find

(i) fog

(ii) gof

(iii) fof

(iv) gog.




Question 11

Consider $f: N \rightarrow N, g: N \rightarrow N$ and $h: N \rightarrow R$ defined as $f(x)=2 x, g(y)=3 y+4$ and $h(z)=\sin z, \forall x, y, z \in N$. Show that ho $(g o f)=(h o g)$ of. 


Question 12

Let $f: R \rightarrow R$ be defined by $f(x)=2 x-3$ and $g: R \rightarrow R$ be defined by $g(x)=\frac{x+3}{2}$

Show that $f o g=I_{R}=g o f$.



Question 13

Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be two one-one functions. Show that $g o f$ is also a one-one function.



Question 14

If $f(x)=x+7$ and $g(x)=x-7, x \in R$, find $(f o g)(7)$.



Question 15

If the function $f: R \rightarrow R$ be given by $f(x)=x^{2}+2$ and $g: R \rightarrow R$ be given by $g(x)=\frac{x}{x-1}, x \neq 1$, find fog and gof and hence find $f o g(2)$ and $g o f(-3)$.








No comments:

Post a Comment

Contact Form

Name

Email *

Message *