Exercise 1.3
Page no- 1.44
Type 1
Question 1
If A=\{2,3,4,5,6\}, B=\{3,4,5,6,7\}, C=\{4,5,6,7,8\}, then find
(i) (A \cup B) \cap(A \cup C) and (A \cap B) \cup(A \cap C).
(ii) A-(B \cup C)
(iii) A-(B-C)
Question 2
If S=\{0,1,2,3, \ldots, 9\}, A=\{0,1,2,3,4\}, B=\{1,2,3\}, C=\{5,6,7\}, D=\{5,7,8,9\}, then find :
(i) B-A
(ii) A^{\prime}
(iii) (C \cup D)
(iv) (D-C)^{\prime}
(v) C \cup S
(vi) A-(B-C).
Question 3
If S=\{2,3,5,7,9\}, A=\{3,7\}, B=\{2,5,7,9\}, then find
(i) A \cap B^{\prime}
(ii) B \cap A^{\prime}. Also verify that \left(A \cup B Y=A^{\prime} \cap B^{\prime}\right..
Question 4
Let A=\left\{x: x \in Z^{+}\right\}, where Z^{+}denotes the set of all positive integers.
B=\{x: x=3 n, n \in Z\}
C=\{x: x is a negative integer \}
D=\{x: x is an odd integer \}
Find (i) A \cap C (ii) A-B (iii) A \cup D
Question 5
Let A=\{3,6,12,15,18,21\}, B=\{4,8,12,16,20\}, C=\{2,4,6,8,10,12,14,16\} and D=\{5,10,15,20\}. Find
(i) A \cap B
(ii) A \cup C
(iii) A-D
(iv) C \cap A
(v) D-A
(vi) B \cup C
Page no- 1.45
Question 6
If S=\{1,2,3, \ldots, n\}, A=\{x: x=2 n, n \in S\}
B=\{x: x=2 n-1 ; n \in S\} and C=\{1,2,3, \ldots, n\}, then find
(i) (A \cap B Y
(ii) A^{\prime} \cap C
(iii) A \cap B^{\prime}
(iv) \boldsymbol{A}^{\prime}
Question 7
If A=\{3,5,7,9,11\}, \quad B=\{7,9,11,13\}; C=\{11,13,15\} and D=\{15,177; find
(i) A \cap C \cap D
(ii) A \cap(B \cap C)
(iii) A \cap(B \cup D)
(iv) (A \cap B) \cap(B \cup C)
(v) (A \cup D) \cap(B \cup C)
Question 8
If A=\{5,6,7,8,9\}, B=\{2,4,6,8,10,12\} and C=\{3,6,9,12\}, then verify that A-(B \cup C)=(A-B) \cap(A-C).
Question 9
Let A=\{x: x is a natural number \}, B=\{x: x is an even natural number \},
C=\{x: x is an odd natural number \}.
D=\{x: x is a prime number \}. Find
(i) A \cap B
(ii) A \cap C
(iii) B \cap D
(iv) C \cap D
Question 10
If A=\{x: x is a positive integer <8 and x is a multiple of 3 or 5\}, B=\left\{x: x^{3}-6 x^{2}+11 x-6=0\right\}
C=\{x: x is even number \leq 7\}, then show that
(i) A \cap(B \cup C)=(A \cap B) \cup(A \cap C).
(ii) A \cup(B \cap C)=(A \cup B) \cap(A \cup C).
(iii) A \cap(B \cap C)=(A \cap B) \cap C.
Question 11
On the real line, if A=[0,3] and B=[1,4] then find A^{\prime}, B^{\prime}, A \cup B, A \cap B and A-B.
Question 12
Taking the set of all natural number N as the universal set, write down the complements of the following sets :
(i) \{x: x \in N and x \geq 7\}
(ii) \{x: x \in N and x is odd \}
(iii) \{x: x \in N and 2 x+5=9\}
(iv) \{x: x \in N and x is even \}
(v) \{x: x is a prime number\}
(vi) \{x: x \in N and x is a perfect cube \}.
Question 13
Which of the following pairs of sets are disjoint ?
(i) \{a, e, i, o, u\} and \{c, d, e, f\}
(ii) \{1,2,3,4\} and \{x: x is a natural number and 4 \leq x \leq 6\}
(iii) \{x: x is an even integer \} and \{x: x is an odd integer \}
Question 14
Give an example of sets A, B, C such that A \cap B \neq \phi,
B \cap C \neq \phi and A \cap C \neq \phi, but A \cap B \cap C=\phi.
Type 2
Question 15
For sets A, B and C, prove the following using the properties of set operations :
(i) (A \cup B)-A=B-A
(ii) A-(B \cup C)=(A-B) \cap(A-C)
(iii) A \cup(B-A)=A \cup B
(iv) A-(B-C)=(A-B) \cup(A \cap C)
(v) (A-B)-C=A-(B \cup C)
(vi) A-(A-B)=B \Leftrightarrow B \subseteq A
(vii) A \cup(A \cap B)=A
(viii) (A \cap B) \cup(A-B)=A
(ix) A \cap(A \cup B)=A
(x) A \cup(B-A)=A \cup B
(xi) (A \cup B) \cap\left(A \cup B^{\prime}\right)=A
Page no 1.46
Type 3
Question 16
Prove the following :
(i) A \cap B \subseteq A and A \cap B \subseteq B
(ii) A=B \Rightarrow A \cap C=B \cap C
(iii) C \subseteq A and C \subseteq B \Rightarrow C \subseteq A \cap B
(iv) A \subseteq B \Rightarrow B^{\prime} \subseteq A^{\prime}
(v) (A \cup \phi) \cap(A \cap \phi)=\phi
(vi) A \cap(A \cup B)=A \cup(A \cap B)=A
(vii) A \subseteq B \Rightarrow C-B \subseteq C-A
(viii) A \subseteq \phi \Rightarrow A=\phi
(ix) A^{\prime} \cup B=S \Rightarrow A \subseteq B
Question 17
Prove the following :
(i) \left(A^{\prime}\right)=A
(ii) A-B=A-(A \cap B)=(A \cup B)-B
(iii) (A \cap B) \cup(A-B)=A
(iv) A \cap(A \cup B)=\phi
(v) A \cap B=A and A \cup B=A \Rightarrow A=B
(vi) A-B=A \Leftrightarrow A \cap B=\phi
(vii) A \subseteq B \subseteq C \Rightarrow C-(B-A)=A \cup(C-B)
(viii) (A \cup B) \cap B^{\prime}=A \Leftrightarrow A \cap B=\phi
Question 18
Show that the following conditions are equivalent :
(i) A \subseteq B
(ii) A \cap B=A
(iii) A-B=\phi
(iv) A \cup B=B
Type 4
Question 19
Shade the following sets :
(i) A^{\prime} \cap B^{\prime}
(ii) A^{\prime} \cup B^{\prime}
(iii) (A \cup B) \cap(A \cup C)
(iv) (A \cap B) \cup(A \cap C)
No comments:
Post a Comment