Loading web-font TeX/Main/Regular

KC Sinha Mathematics Solution Class 11 Chapter 11 Complex Numbers Exercise 11.1

 Exercise 11.1

Page no-11.13

Type 1

Question 1

Write the following as complex numbers :
(i) \sqrt{-27}
(ii) \sqrt{-16}
(iii) 4-\sqrt{-5}
(iv) -1-\sqrt{-5}
(v) 1+\sqrt{-1}

Question 2

Write the real and imaginary parts of the following complex numbers :
(i) 2-i \sqrt{2}
(ii) -\frac{1}{5}+\frac{i}{5}
(iii) \frac{\sqrt{5}}{7} i
(iv) \sqrt{37}+\sqrt{-19}
(v) \frac{\sqrt{37}}{3}+\frac{3}{\sqrt{70}} i

Question 3

Find the additive inverse of the following :
(i) -5+7 i
(ii) 4-3 i
(iii) 10

Question 4

Find the sum of the following numbers \frac{2}{3}+\frac{5}{3} i,-\frac{2}{3} i and -\frac{5}{4}-i.

Question 5

Find the difference of the following complex numbers (i) -3+2 i and 13-i
(ii) 1-i and -1+6 i

Page no-11.14

Question 6

Find the product and quotient of the complex numbers 1+i and 3+i.

Question 7

Find multiplicative inverse of the following :
(i) 2+\sqrt{3} i
(ii) -3+4 i
(iii) -i
(iv) 4-i 3
(v) (\sqrt{5}+i 3)
(vi) 2-3 i

Question 8

(i) Prove that \operatorname{Re}\left(z_{1} z_{2}\right)=\operatorname{Re} z_{1} \operatorname{Re} z_{2}-\operatorname{Im} z_{1} \operatorname{Im} z_{2}
(ii) Let z_{1}=2-i, z_{2}=-2+i, find (a) \operatorname{Re}\left(\frac{z_{1} z_{2}}{\overline{z_{1}}}\right)
(b) \operatorname{Im}\left(\frac{1}{z_{1} \overline{z_{1}}}\right)

Type 2

Question 9

Express the following in the form a+i b :
(i) (3+2 i)(3-2 i)
(ii) (i-2)^{2}
(iii) \frac{2-i}{4+3 i}
(iv) \frac{1+2 i+3 i^{2}}{1-2 i+3 i^{2}}
(v) \left(\frac{1+i}{1-i}\right)^{2}
(vi) \left(\frac{1+2 i}{2+i}\right)^{2}
(vii) \frac{6+3 i}{2-i}
(viii) \frac{5+\sqrt{2} i}{1-\sqrt{2} i}

Question 10

Simplify the following :
(i) 2 i^{2}+6 i^{3}+3 i^{16}-6 i^{19}+4 i^{25}
(ii) 1+i^{10}+i^{110}+i^{1000}
(iii) i^{n}+i^{n+1}+i^{n+2}+i^{n+3}
(iv) \left\{i^{17}-\left(\frac{1}{i}\right)^{34}\right\}^{2}
(v) (-i)^{4 n+3}, where n is a positive integer.
(vi) \left(\frac{1+i}{1-i}\right)^{4 n+1}, where n is a positive integer.
(vii) (2 i)^{3}
(viii) (8i) \left(-\frac{1}{8} i\right)
(ix) (5 i)\left(-\frac{3}{5} i\right)
(x) (-5 i)\left(\frac{1}{8} i\right)
(xi) (-i)(2 i)\left(-\frac{1}{8} i\right)^{3}
(xii) i^{-35}
(xiii) i^{-39}
(xiv) i^{9}+i^{19}
(\mathrm{xv})\left[i^{18}+\left(\frac{1}{i}\right)^{25}\right]^{3}
(xvi) i^{6}+i^{8}
(xvii) i+i^{2}+i^{3}+i^{4}
(xviii) i^{12}+i^{13}+i^{14}+i^{15}
(xix) i^{4}+i^{8}+i^{12}+i^{16}

Page no-11.15

Question 11

Write the following in the form a+i b: \frac{1}{(2+i)^{2}}-\frac{1}{(2-i)^{2}}.

Question 12

Express the following in the form a+i b :
(i) \left(\frac{1}{5}+i \frac{2}{5}\right)-\left(4+i \frac{5}{2}\right)
(ii) (7-i 2)-(4+i)+(-3+i 5)
(iii) \left[\left(\frac{1}{3}+i \frac{7}{3}\right)+\left(4+i \frac{1}{3}\right)\right]-\left(-\frac{4}{3}+i\right) (iv) i^{3}+(6+i 3)-(20+i 5)+(14+i 3)
(v) (7+i 5)(7-i 5)
(vi) 3 i^{3}\left(15 i^{6}\right)
(vii) \sqrt{3}+(\sqrt{3}-i 2)-(3-i 2)
(viii) (1+i)^{4}
(ix) \left(\frac{1}{2}+i 2\right)^{3}
(x)\left(-2-i \frac{1}{3}\right)^{3}
(xi) 3(7+7 i)+i(7+7 i)
(xii) (3+5 i)(2+6 i)
(xiii) \left(\frac{1}{3}+3 i\right)^{3}
(xiv) (5-3 i)^{3}
(xv) (1-i)^{4}

Question 13

Find the following as a single complex number x+i y :
(i) (\sqrt{6}+i 5)\left(\sqrt{6}-i \frac{1}{5}\right)
(ii) (5+i 9)(-3+i 4)
(iii) (-2-i 5)(3-i 6)
(iv) \left[\left(\sqrt{5}+\frac{i}{2}\right)(\sqrt{5}-i 2)\right]+(6+i 5)
(v) \frac{[(\sqrt{2}+i \sqrt{3})+(\sqrt{2}-i \sqrt{3})]}{[(\sqrt{3}+i \sqrt{2})+(\sqrt{3}-i \sqrt{2})]}
(vi) \frac{(3+i \sqrt{5})(3-i \sqrt{5})}{(\sqrt{3}+i \sqrt{2})-(\sqrt{3}-i \sqrt{2})}
(vii) \left(\frac{1}{1-4 i}-\frac{2}{1+i}\right)\left(\frac{3-4 i}{5+i}\right)

Question 14

If \left(\frac{1+i}{1-i}\right)^{m}=1, then find the least positive integral value of m.

Question 15

Find x and y if :
(i) (x+i y)+(7-5 i)=9+4 i
(ii) (x+i y)(2-3 i)=4+i
(iii) \left(\frac{3}{\sqrt{5}} x-5\right)+i 2 \sqrt{5} y=\sqrt{2}
(iv) 4 x+i(3 x-y)=3-i 6
(v) (3 y-2)+i(7-2 x)=0.

 Type 3

Question 16

If a=\frac{1+i}{\sqrt{2}}, find the value of a^{6}+a^{4}+a^{2}+1

Question 17

If x=\sqrt{-2}-1, find the value of x^{4}+4 x^{3}+6 x^{2}+4 x+9

Question 18

If x=3+4 i, find the value of x^{4}-12 x^{3}+70 x^{2}-204 x+225

Question 19

If x=3+2 i, find the value of x^{4}-4 x^{3}+4 x^{2}+8 x+39







































































































No comments:

Post a Comment

Contact Form

Name

Email *

Message *