Exercise 11.2
Page no 11.29
Type 1
Question 1
Find the square root of the following :
(i) 7-24 i
(ii) -15-8 i
(iii) i
(iv) -i
(v) 1+i
(vi) 1-i
(vii) -11-60 \sqrt{-1}
(viii) -8-6 i
(ix) -5+12 i
(x) 4-6 \sqrt{-5}
(xi) 6 \sqrt{-2}-7
(xii) 4 a b-2\left(a^{2}-b^{2}\right) i
(xiii) \frac{x^{2}}{y^{2}}+\frac{y^{2}}{x^{2}}-\frac{1}{i}\left(\frac{x}{y}-\frac{y}{x}\right)-\frac{9}{4}
(xiv) x^{2}+\frac{1}{x^{2}}+4 i\left(x-\frac{1}{x}\right)-6
(xv) a^{2}-1+2 a \sqrt{-1}
Question 2
Find \sqrt{2+3 \sqrt{-5}}+\sqrt{2-3 \sqrt{-5}}
Question 3
Find the value of :
(i) \omega^{21}
(ii) \omega^{18}
(iii) \omega^{768}
(iv) \omega^{-105}
(v) \omega^{-364}
(vi) \omega^{-30}
Question 4
If \alpha=\frac{-1+\sqrt{-3}}{2}, \beta=\frac{-1-\sqrt{-3}}{2}, prove that \frac{\alpha}{\beta}+\frac{\beta}{\alpha}+1=0
Question 5
If 1, \omega, \omega^{2} be three cube roots of 1 , show that :
(i) \left(1+\omega-\omega^{2}\right)\left(1-\omega+\omega^{2}\right)=4
(ii) \left(3+\omega+3 \omega^{2}\right)^{6}=64
(iii) \left(1-\omega^{2}+\omega^{4}\right)\left(1+\omega^{2}-\omega^{4}\right)=4 (iv) \left(1-\omega+\omega^{2}\right)^{2}+\left(1+\omega-\omega^{2}\right)^{2}=-4
(v) \left.(1+\omega)^{3}-(1+\omega)^{2}\right)^{3}=0
Question 6
Evaluate \sqrt{-2+2 \sqrt{-2+2 \sqrt{-2+\ldots \text { to } \infty}}}
Question 7
Show that \left(\frac{\sqrt{3}+i}{2}\right)^{6}+\left(\frac{i-\sqrt{3}}{2}\right)^{6}=-2
Question 8
If 1, \omega, \omega^{2} be the three cube roots of 1 , then show that :
(i) (1+\omega)\left(1+\omega^{2}\right)\left(1+\omega^{4}\right)\left(1+\omega^{5}\right)=1
(ii) (1+\omega)\left(1+\omega^{2}\right)\left(1+\omega^{4}\right)\left(1+\omega^{8}\right)=1
(iii) \left(2+\omega+\omega^{2}\right)^{3}+\left(1+\omega-\omega^{2}\right)^{8}-\left(1-3 \omega+\omega^{2}\right)^{4}=1
(iv) \left(1-\omega+\omega^{2}\right)\left(1-\omega^{2}+\omega^{4}\right)\left(1-\omega^{4}+\omega^{8}\right)\left(1-\omega^{8}+\omega^{16}\right)=16
(v) (a+b+c)\left(a+b \omega+c \omega^{2}\right)\left(a+b \omega^{2}+c \omega\right)=a^{3}+b^{3}+c^{3}-3 a b c
Question 9
If \omega be an imaginary cube root of unity, show that
\frac{a+b \omega+c \omega^{2}}{a \omega+b \omega^{2}+c}=\omega^{2}
Page no 11.29
Question 10
If \omega be an imaginary cube root of unity, show that 1+\omega^{n}+\omega^{2 n}=0, for n=2,4
Question 11
Resolve into linear factors :
(i) a^{2}-a b+b^{2}
(ii) a^{2}+a b+b^{2}
(iii) a^{3}+b^{3}
(iv) a^{3}-b^{3}
(v) a^{3}+b^{3}+c^{3}-3 a b c
Question 12
If x=a+b, y=a \omega+b \omega^{2} and z=a \omega^{2}+b \omega, where \omega is an imaginary cube root of unity, prove that x^{2}+y^{2}+z^{2}=6 a b.
Question 13
If \omega be an imaginary cube root of unity, show that :
\frac{1}{1+2 \omega}+\frac{1}{2+\omega}-\frac{1}{1+\omega}=0
Question 14
Find the cube roots of following :
(i) 8
(ii) -8
No comments:
Post a Comment