Exercise 11.3
Page no 11.50
Type 1
Question 1
Find the modulus of the following :
(i) \frac{1-i \sqrt{3}}{2+2 i}
(ii) \frac{2+i}{4 i+(1+i)^{2}}
(iii) \frac{1+i}{1-i}-\frac{1-i}{1+i}
Question 2
Find the argument of the following :
(i) -\sqrt{3}-i
(ii) \frac{1+i}{1-\sqrt{3} i}
Page no 11.51
Question 3
Find the modulus and argument of the following complex numbers :
(i) z=-1-i \sqrt{3}
(ii) z=-\sqrt{3}+i
(iii) z=\frac{(1+i)^{13}}{(1-i)^{7}}
(iv) z=\frac{1}{1+i}
(v) z=\frac{1+i}{1-i}
(vi) z=\frac{1+2 i}{1-3 i}
Question 4
Find the conjugate of \frac{(3-2 i)(2+3 i)}{(1+2 i)(2-i)}
Question 5
Find real numbers x and y if (x-i y)(3+5 i) is the conjugate of -6-24 i.
Question 6
If |2 z-1|=|z-2|, prove that |z|=1, where z is a complex.
Question 7
Let z=x+i y and w=\frac{1-i z}{z-i}, show that if |w|=1, then z is real.
Question 8
If \left|\frac{z-5 i}{z+5 i}\right|=1, prove that z is real.
Question 9
If |z|<4, prove that |i z+3-4 i|<9
[ Hint : |i z+(3-4 i)| \leq|i z|+|3-4 i|]
Question 10
(i) If |z-1|<3, prove that |i z+3-5 i|<8.
(ii) Prove that \left|1-\bar{z}_{1} z_{2}\right|^{2}-\left|z_{1}-z_{2}\right|^{2}=\left(1-\left|z_{1}\right|^{2}\right)\left(1-\left|z_{2}\right|^{2}\right).
Question 11
If z_{1} and z_{2} are any two complex numbers, show that
\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}z_{2}\right|^{2}=2\left|z_{1}\right|^{2}+2\left|z_{2}\right|^{2} \text {. }
Question 12
Solve the equation |z|+z=2+i.
Type 2
Question 13
Change the following complex numbers in Cartesian form :
(i) 2\left(\cos 0^{\circ}+i \sin 0^{\circ}\right)
(ii) 5\left(\cos 270^{\circ}+i \sin 270^{\circ}\right)
(iii) 4\left(\cos 300^{\circ}+i \sin 300^{\circ}\right).
Question 14
Write the number z=(i-\sqrt{3})^{13} in algebraic form.
Question 15
Put the following numbers in the polar form :
(i) 1+i
(ii) -1-\sqrt{3} i
(iii) 1-i
( iv )-3
(\mathrm{v})-1+i
(vi) -1-i
(vii) \sqrt{3}+t
(viii) -4+i 4 \sqrt{3}
(ix) i
(x)\left(\frac{2+i}{3-i}\right)^{2}
(xi) 1+i \sqrt{3}
(xii) \frac{1+3 i}{1-2 i}
(xiii) \frac{-16}{1+i \sqrt{3}}
Question 16
Give the following products in polar form :
(i) \left[2\left(\cos 0^{\circ}+i \sin 0^{\circ}\right)\right]\left[4\left(\cos 90^{\circ}+i \sin 90^{\circ}\right)\right]
(ii) \left[3\left(\cos 225^{\circ}+i \sin 225^{\circ}\right)\right]\left[6\left(\cos 45^{\circ}+i \sin 45^{\circ}\right)\right]
(iii) \left[2\left(\cos 210^{\circ}+i \sin 210^{\circ}\right)\right]\left[4\left(\cos 120^{\circ}+i \sin 120^{\circ}\right)\right]
Question 17
Give the following quotients in polar form :
(i) \frac{7\left(\cos 135^{\circ}+i \sin 135^{\circ}\right)}{14\left(\cos 90^{\circ}+i \sin 90^{\circ}\right)}
(ii) \frac{9\left(\cos 90^{\circ}+i \sin 90^{\circ}\right)}{3\left(\cos 45^{\circ}+i \sin 45^{\circ}\right)}
Page no 11.52
Question 18
Write the complex number z=\frac{i-1}{\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}} in polar form.
Type 3
Question 19
If (a+i b)(c+i d)=x+i y, show that
(i) (a-i b)(c-i d)=x-i y
(ii) \left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=x^{2}+y^{2}
Question 20
If x is real and \frac{1-i x}{1+i x}=m+i n, show that m^{2}+n^{2}=1
Question 21
If x+i y=\frac{a+i b}{a-i b}, prove that x^{2}+y^{2}=1
Question 22
If (a+i b)(c+i d)(e+i f)(g+i h)=A+i B, then show that
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)\left(e^{2}+f^{2}\right)\left(g^{2}+h^{2}\right)=A^{}+B^{2}
Question 23
If a+i b=\frac{(x+i)^{2}}{2 x^{2}+1}, prove that a^{2}+b^{2}=\frac{\left(x^{2}+1\right)^{2}}{\left(2 x^{2}+1\right)^{2}}
Question 24
If \frac{1}{m+i n}-\frac{x-i y}{x+i y}=0, where x, y, m, n are real and x+i y \neq 0 and m+i n \neq 0, prove that m^{2}+n^{2}=1
Question 25
If \left(1+i \frac{x}{a}\right)\left(1+i \frac{x}{b}\right)\left(1+i \frac{x}{c}\right) \ldots=A+i B, then prove that
\left(1+\frac{x^{2}}{a^{2}}\right)\left(1+\frac{x^{2}}{b^{2}}\right)\left(1+\frac{x^{2}}{c^{2}}\right) \ldots=A^{2}+B^{2}
Question 26
If \frac{a-i b}{a+i b}=\frac{1+i}{1-i}, then show that a+b=0
Type 4
Question 27
Express as the sum of two squares :
(i) \left(1+a^{2}\right)\left(1+b^{2}\right)
(ii) \left(1+x^{2}\right)\left(1+y^{2}\right)\left(1+z^{2}\right).
Question 28
Show that :
\left(x^{2}+y^{2}\right)^{4}=\left(x^{4}-6 x^{2} y^{2}+y^{4}\right)^{2}+\left(4 x^{3} y-4 xy^{3}\right)^{2}
No comments:
Post a Comment