Exercise 13.2
Page no 13.31
Type 1
Question 1
Solve the following inequations :
1. -2 \leq 6 x-1<2
2. -3 \leq 4-7 x<18
3. 0<-\frac{x}{3}<1
4. -7<2 x-3<7
5. 6 \leq-3(2 x-4)<12
6. -2<1-3 x<7
7. -3 \leq \frac{4-7 x}{2} \leq 18
8. -12 \leq \frac{4-3 x}{-5}<2
Question 9
Find the range of values of x, which satisfy the inequality -\frac{1}{5} \leq \frac{3 x}{10}+1<\frac{2}{5}, x<R. Represent the solution set on the number line.
Question 10
Find the values of x, which satisfy the inequation :
-2 \leq \frac{1}{2}-\frac{2 x}{3} \leq 1 \frac{5}{6}, x \in N
Represent the solution set on the number line.
Type 2
Question 11
Solve the following system of inequations :
11. 2 x+5 \leq 0, x-3 \leq 0
12. x-2>0,3 x<18
13. x+3>0,2 x<14
14. x+2>11,2 x \leq 20
15. 5 x+1>-24,5 x-1<24
16. 3 x-1 \geq 5, x+2>-1
17. 2 x-7<11,3 x+4<-5
18. 4 x-5<11,-3 x-4 \geq 8
19. 4-5 x>-11,4 x+11 \leq-13
20. -4 x+1 \geq 0,3-4 x<0
21. x+2 \leq 5,3 x-4>-2+x
22. 4 x+3 \geq 2 x+17,3 x-5<-2
23. 7 x-8<4 x+7,-\frac{x}{2}>4
24. 3 x-7>2(x-6), 6-x>11-2 x
25. 2 x-7>5-x, 11-5 x \leq 1
26. \frac{4 x}{3}-\frac{9}{4}<x+\frac{3}{4}, \frac{7 x-1}{3}-\frac{7 x+2}{6}>x
Page no 13.32
Type 3
Question 27
Solve the following inequations :
27. (i) |x| \leq 5
(ii) |x|>5
28. (i) |x-2| \leq 5
(ii) |x+1| \geq 3
29. |3 x-2| \leq \frac{1}{2}
30. 1 \leq|x+1| \leq 2
31. \frac{|x+3|+x}{x+2}>1
32. |x-1|+|x-2| \geq 3
33. |x+1|+|x-1|=|2 x|
34. |x+2|-|x|=2
No comments:
Post a Comment