Exercise 14.1
Page no 14.16
Question 1
Evaluate the following :
(i) $7 !$ (ii) 5 ! (iii) 8 !
(iv) $8 !-5 !$
(v) $4 !-3$ !
(vi) $7 !-5 !$
(vii) $\frac{6 !}{5 !}$
(viii) $\frac{7 !}{5 !}$
(ix) $\frac{8 !}{6 ! 2 !}$
(x) $\frac{9 !}{4 ! 5 !}$
(xi) $\frac{12 !}{(10 !) 2 \times 1}$
Question 2
Compute
(i) $(3 !)(5 !)$
(ii) $\frac{20 !}{18 !(20-18) !}$
(iii) $\frac{1}{5 !}+\frac{1}{6 !}+\frac{1}{7 !}$
Question 3
Evaluate $\frac{n !}{r !(n-r) !}$, when
(i) $n=7, r=3$
(ii) $n=15, r=12$
(iii) $n=5, r=2$
Question 4
Evaluate $\frac{n !}{(n-r) !}$, when
(i) $n=9, r=5$
(ii) $n=6, r=2$
Question 5
Convert the following into factorials :
(i) $1.3 .5 .7 .9 .11$
(ii) $(n+1)(n+2)(n+3) \ldots 2 n$
Question 6
State whether 'true' or 'false' :
(i) $2 !+3 !=5 !$
(ii) $2 ! \times 3 !=6 !$
(iii) $\frac{8 !}{4 !}=2$ !
(iv) $5 !-3 !=2$ !
(v) $3 !+4 !=7$ !
Question 7
Find $x$ if:
(i) $\frac{1}{8 !}+\frac{1}{9 !}=\frac{x}{10 !}$
(ii) $\frac{1}{6 !}+\frac{1}{7 !}=\frac{x}{8 !}$
Question 8
Find the value of $n$ if :
(i) $(n+1) !=12 \cdot(n-1) !$
(ii) $2 n ! n !=(n+1)(n-1) !(2 n-1) !$
Question 9
If $\frac{n !}{2 !(n-2) !}$ and $\frac{n !}{4 !(n-4) !}$ are in ratio $2: 1$, find the value of $n$.
Question 10
Show that $n !(n+2)=n !+(n+1) !$
Question 11
Find the value of $x$ if $\frac{(x+2) !}{(2 x-1) !} \cdot \frac{(2 x+1) !}{(x+3) !}=\frac{72}{7}$ where $x \in N$.
Question 12
Show that $27 !$ is divisible by $2^{12}$. What is the largest natural number $n$ such that 27 ! is divisible by $2^{n}$ ?
Question 13
Show that $24 !+1$ is not divisible by any number between 2 to 24 .
No comments:
Post a Comment