Exercise 14.1
Page no 14.16
Question 1
Evaluate the following :
(i) 7 ! (ii) 5 ! (iii) 8 !
(iv) 8 !-5 !
(v) 4 !-3 !
(vi) 7 !-5 !
(vii) \frac{6 !}{5 !}
(viii) \frac{7 !}{5 !}
(ix) \frac{8 !}{6 ! 2 !}
(x) \frac{9 !}{4 ! 5 !}
(xi) \frac{12 !}{(10 !) 2 \times 1}
Question 2
Compute
(i) (3 !)(5 !)
(ii) \frac{20 !}{18 !(20-18) !}
(iii) \frac{1}{5 !}+\frac{1}{6 !}+\frac{1}{7 !}
Question 3
Evaluate \frac{n !}{r !(n-r) !}, when
(i) n=7, r=3
(ii) n=15, r=12
(iii) n=5, r=2
Question 4
Evaluate \frac{n !}{(n-r) !}, when
(i) n=9, r=5
(ii) n=6, r=2
Question 5
Convert the following into factorials :
(i) 1.3 .5 .7 .9 .11
(ii) (n+1)(n+2)(n+3) \ldots 2 n
Question 6
State whether 'true' or 'false' :
(i) 2 !+3 !=5 !
(ii) 2 ! \times 3 !=6 !
(iii) \frac{8 !}{4 !}=2 !
(iv) 5 !-3 !=2 !
(v) 3 !+4 !=7 !
Question 7
Find x if:
(i) \frac{1}{8 !}+\frac{1}{9 !}=\frac{x}{10 !}
(ii) \frac{1}{6 !}+\frac{1}{7 !}=\frac{x}{8 !}
Question 8
Find the value of n if :
(i) (n+1) !=12 \cdot(n-1) !
(ii) 2 n ! n !=(n+1)(n-1) !(2 n-1) !
Question 9
If \frac{n !}{2 !(n-2) !} and \frac{n !}{4 !(n-4) !} are in ratio 2: 1, find the value of n.
Question 10
Show that n !(n+2)=n !+(n+1) !
Question 11
Find the value of x if \frac{(x+2) !}{(2 x-1) !} \cdot \frac{(2 x+1) !}{(x+3) !}=\frac{72}{7} where x \in N.
Question 12
Show that 27 ! is divisible by 2^{12}. What is the largest natural number n such that 27 ! is divisible by 2^{n} ?
Question 13
Show that 24 !+1 is not divisible by any number between 2 to 24 .
No comments:
Post a Comment