Exercise 16.1
Page no 16.11
Type 1
Question 1
Expand the following by binomial theorem :
(i) $(x+y)^{5}$
(ii) $(1-x)^{6}$
(iii) $\left(x+\frac{1}{x}\right)^{7}$
(iv) $\left(x^{2}+\frac{2}{x}\right)^{4}, x \neq 0$
(v) $\left(\frac{2 x}{3}-\frac{3}{2 x}\right)^{6}$
(vi) $(3 x-2 y)^{5}$
(vii) $\left(\frac{2}{x}-\frac{x}{2}\right)^{5}$
(viii) $\left(1+2 x+x^{2}\right)^{3}$
(ix) $\left(x^{2}+\frac{3}{x}\right)^{4}, x \neq 0$
(x) $(2 x-3)^{6}$
(xi) $(1-2 x)^{5}$
(xii) $\left(\frac{x}{3}+\frac{1}{x}\right)^{5}$
(xiii) $\left(1+\frac{x}{2}-\frac{2}{x}\right)^{4}, x \neq 0$
Question 2
Expand the following :
$\left(1+x+x^{2}\right)^{4}$
Question 3
(i) Express $\left(x+\sqrt{x^{2}+1}\right)^{6}+\left(x-\sqrt{x^{2}+1}\right)^{6}$ as a polynomial in $x$.
(ii) Find the value of $\left(a^{2}+\sqrt{a^{2}-1}\right)^{4}+\left(a^{2}-\sqrt{a^{2}-1}\right)^{4}$
(iii) Using binomial theorem expand $\left\{(x+y)^{5}+(x-y)^{5}\right\}$ and hence find the value of $\left\{(\sqrt{2}+1)^{5}+(\sqrt{2}-1)^{5}\right\}$
(iv) Find $(a+b)^{4}-(a-b)^{4}$. Hence, evaluate $(\sqrt{3}+\sqrt{2})^{4}-(\sqrt{3}-\sqrt{2})^{4}$
Question 4
Evaluate
(i) $(\sqrt{3}+1)^{5}-(\sqrt{3}-1)^{5}$
(ii) $(\sqrt{2}+1)^{6}+(\sqrt{2}-1)^{6}$
(iii) $(\sqrt{3}+\sqrt{2})^{3}+(\sqrt{3}-\sqrt{2})^{3}$
(iv) $(\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6}$
Page no 16.12
Question 5
Find the number of terms in the following expansions
(i) $\left(1-2 x+x^{2}\right)^{30}$
(ii) $(\sqrt{a}+\sqrt{b})^{10}+(\sqrt{a}-\sqrt{b})^{10}$
Question 6
If $A$ be the sum of odd terms and $B$ the sum of even terms in the expansion of $(x+a)^{n}$; show that $4 A B=(x+a)^{2 n}-(x-a)^{2 n}$.
Question 7
Find the value of $(0.99)^{10}$ correct to 4 places of decimal.
Question 8
Using Binomial theorem evaluate $(0.99)^{15}$ correct to four places of decimal.
Question 9
Evaluate :
(i) $(101)^{4}$
(ii) $(102)^{5}$
(iii) $(999)^{5}$
(iv) $(102)^{6}$
Question 10
Evaluate :
(i) $(51)^{6}$
(ii) $(98)^{4}$
(iii) $(96)^{3}$
(iv) $(98)^{5}$
Question 11
Find the value of $(1.01)^{10}+(0.99)^{10}$ correct to 7 places of decimal.
Question 12
Find the greater of the two numbers
(i) $(1.01)^{1000000}$ and 10000 (ii) $(1.1)^{10000}$ and 1000 .
Question 13
Prove that (i) ${ }^{n} C_{0}+2 \cdot{ }^{n} C_{1}+\ldots+2^{n} \cdot{ }^{n} C_{n}=3^{n}$ for every natural number $n$.
(ii) ${ }^{2 n} C_{0}-3 \cdot{ }^{2 n} C_{1}+3^{2} \cdot{ }^{2 n} C_{2}-\ldots+(-1)^{2 n} \cdot 3^{2 n} \quad{ }^{2 n} C_{2 n}=4^{n}$, for all $n \in N$
Question 14
Find the approximate value of $(0.99)^{5}$ using the first three terms of its expansion.
No comments:
Post a Comment