Exercise 16.1
Page no 16.11
Type 1
Question 1
Expand the following by binomial theorem :
(i) (x+y)^{5}
(ii) (1-x)^{6}
(iii) \left(x+\frac{1}{x}\right)^{7}
(iv) \left(x^{2}+\frac{2}{x}\right)^{4}, x \neq 0
(v) \left(\frac{2 x}{3}-\frac{3}{2 x}\right)^{6}
(vi) (3 x-2 y)^{5}
(vii) \left(\frac{2}{x}-\frac{x}{2}\right)^{5}
(viii) \left(1+2 x+x^{2}\right)^{3}
(ix) \left(x^{2}+\frac{3}{x}\right)^{4}, x \neq 0
(x) (2 x-3)^{6}
(xi) (1-2 x)^{5}
(xii) \left(\frac{x}{3}+\frac{1}{x}\right)^{5}
(xiii) \left(1+\frac{x}{2}-\frac{2}{x}\right)^{4}, x \neq 0
Question 2
Expand the following :
\left(1+x+x^{2}\right)^{4}
Question 3
(i) Express \left(x+\sqrt{x^{2}+1}\right)^{6}+\left(x-\sqrt{x^{2}+1}\right)^{6} as a polynomial in x.
(ii) Find the value of \left(a^{2}+\sqrt{a^{2}-1}\right)^{4}+\left(a^{2}-\sqrt{a^{2}-1}\right)^{4}
(iii) Using binomial theorem expand \left\{(x+y)^{5}+(x-y)^{5}\right\} and hence find the value of \left\{(\sqrt{2}+1)^{5}+(\sqrt{2}-1)^{5}\right\}
(iv) Find (a+b)^{4}-(a-b)^{4}. Hence, evaluate (\sqrt{3}+\sqrt{2})^{4}-(\sqrt{3}-\sqrt{2})^{4}
Question 4
Evaluate
(i) (\sqrt{3}+1)^{5}-(\sqrt{3}-1)^{5}
(ii) (\sqrt{2}+1)^{6}+(\sqrt{2}-1)^{6}
(iii) (\sqrt{3}+\sqrt{2})^{3}+(\sqrt{3}-\sqrt{2})^{3}
(iv) (\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6}
Page no 16.12
Question 5
Find the number of terms in the following expansions
(i) \left(1-2 x+x^{2}\right)^{30}
(ii) (\sqrt{a}+\sqrt{b})^{10}+(\sqrt{a}-\sqrt{b})^{10}
Question 6
If A be the sum of odd terms and B the sum of even terms in the expansion of (x+a)^{n}; show that 4 A B=(x+a)^{2 n}-(x-a)^{2 n}.
Question 7
Find the value of (0.99)^{10} correct to 4 places of decimal.
Question 8
Using Binomial theorem evaluate (0.99)^{15} correct to four places of decimal.
Question 9
Evaluate :
(i) (101)^{4}
(ii) (102)^{5}
(iii) (999)^{5}
(iv) (102)^{6}
Question 10
Evaluate :
(i) (51)^{6}
(ii) (98)^{4}
(iii) (96)^{3}
(iv) (98)^{5}
Question 11
Find the value of (1.01)^{10}+(0.99)^{10} correct to 7 places of decimal.
Question 12
Find the greater of the two numbers
(i) (1.01)^{1000000} and 10000 (ii) (1.1)^{10000} and 1000 .
Question 13
Prove that (i) { }^{n} C_{0}+2 \cdot{ }^{n} C_{1}+\ldots+2^{n} \cdot{ }^{n} C_{n}=3^{n} for every natural number n.
(ii) { }^{2 n} C_{0}-3 \cdot{ }^{2 n} C_{1}+3^{2} \cdot{ }^{2 n} C_{2}-\ldots+(-1)^{2 n} \cdot 3^{2 n} \quad{ }^{2 n} C_{2 n}=4^{n}, for all n \in N
Question 14
Find the approximate value of (0.99)^{5} using the first three terms of its expansion.
No comments:
Post a Comment