Processing math: 100%

KC Sinha Mathematics Solution Class 11 Chapter 17 Sequences and Series : AP Exercise 17.1

 Exercise 17.1


Page no -17.3

Question 1

Write the first three terms of the sequences defined by the following :
(i) t_{n}=3 n+1
(ii) 2^{n}
(iii) t_{n}=n^{2}+1
(iv) t_{n}=n(n+2)
(v) t_{n}=2 n+5
(vi) t_{n}=\frac{n-3}{4}
(vii) t_{n}=\frac{2 n-3}{6}
(viii) t_{n}=\frac{n}{n+1}
(ix) t_{n}=\frac{n^{2}}{n+1}
(x) t_{n}=\frac{n\left(n^{2}+5\right)}{4}

Question 2

Find the indicated terms in each of the following sequences whose m th terms are :
(i) t_{n}=(-1)^{n-1} 5^{n-1} ; t_{3}
(ii) t_{n}=\frac{n^{2}}{2^{n}} ; t_{4}, t_{6}
(iii) 4 n-3 ; t_{17}, t_{24}
(iv) t_{n}=(-1)^{n-1}, n^{3}, t_{9}
(v) t_{n}=\frac{n^{2}(n+1)}{3} ; t_{1}, t_{2}
(vi) t_{n}=\frac{n(n-2)}{n+3} ; t_{20}
(vii) t_{n}=(n-1)(2-n)(3+n) ; t_{20}
(viii) t_{n}=\frac{t_{n-1}}{n^{2}}, t_{1}=3 ; t_{2}, t_{3},(n \geq 2)

Question 3

Write the next three terms of the following sequences :
(i) t_{2}=2, t_{n}=t_{n-1}+1,(n \geq 3)
(ii) t_{1}=3, t_{n}=3 t_{n-1}+2 for all n>1
(iii) t_{1}=1, t_{n}=\frac{t_{n-1}}{n},(n \geq 2)
(iv) t_{1}=t_{2}=2, t_{n}=t_{n-1}-1, n>2

Question 4

Find the first five terns of the following sequences and write down the corresponding series :
(i) t_{1}=1, t_{n}=t_{n-1}+2 for n \geq 2
(ii) t_{1}=-1, t_{n}=\frac{t_{n-1}}{n}, n \geq 2

Question 5

The Fibonacci sequence is defined by t_{1}=t_{2}=1_{1}, I_{n}=t_{n-1}+t_{n-2}(n>2). If t_{n+1}=k t_{n}, then find the values of k for n=1,2,3 and 4 .



































































No comments:

Post a Comment

Contact Form

Name

Email *

Message *