Exercise 17.1
Page no -17.3
Question 1
Write the first three terms of the sequences defined by the following :
(i) $t_{n}=3 n+1$
(ii) $2^{n}$
(iii) $t_{n}=n^{2}+1$
(iv) $t_{n}=n(n+2)$
(v) $t_{n}=2 n+5$
(vi) $t_{n}=\frac{n-3}{4}$
(vii) $t_{n}=\frac{2 n-3}{6}$
(viii) $t_{n}=\frac{n}{n+1}$
(ix) $t_{n}=\frac{n^{2}}{n+1}$
(x) $t_{n}=\frac{n\left(n^{2}+5\right)}{4}$
Question 2
Find the indicated terms in each of the following sequences whose $m$ th terms are :
(i) $t_{n}=(-1)^{n-1} 5^{n-1} ; t_{3}$
(ii) $t_{n}=\frac{n^{2}}{2^{n}} ; t_{4}, t_{6}$
(iii) $4 n-3 ; t_{17}, t_{24}$
(iv) $t_{n}=(-1)^{n-1}, n^{3}, t_{9}$
(v) $t_{n}=\frac{n^{2}(n+1)}{3} ; t_{1}, t_{2}$
(vi) $t_{n}=\frac{n(n-2)}{n+3} ; t_{20}$
(vii) $t_{n}=(n-1)(2-n)(3+n) ; t_{20}$
(viii) $t_{n}=\frac{t_{n-1}}{n^{2}}, t_{1}=3 ; t_{2}, t_{3},(n \geq 2)$
Question 3
Write the next three terms of the following sequences :
(i) $t_{2}=2, t_{n}=t_{n-1}+1,(n \geq 3)$
(ii) $t_{1}=3, t_{n}=3 t_{n-1}+2$ for all $n>1$
(iii) $t_{1}=1, t_{n}=\frac{t_{n-1}}{n},(n \geq 2)$
(iv) $t_{1}=t_{2}=2, t_{n}=t_{n-1}-1, n>2$
Question 4
Find the first five terns of the following sequences and write down the corresponding series :
(i) $t_{1}=1, t_{n}=t_{n-1}+2$ for $n \geq 2$
(ii) $t_{1}=-1, t_{n}=\frac{t_{n-1}}{n}, n \geq 2$
Question 5
The Fibonacci sequence is defined by $t_{1}=t_{2}=1_{1}, I_{n}=t_{n-1}+t_{n-2}(n>2)$. If $t_{n+1}=k t_{n}$, then find the values of $k$ for $n=1,2,3$ and 4 .
No comments:
Post a Comment