Exercise 17.4
Page no 17.27
Question 1
If $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$ are in A.P. and $a+b+c \neq 0$, prove that $\frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+h}$ are in A.P.
Question 2
If $a^{2}, b^{2}, c^{2}$ are in A.P., show that $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$ are in A.P.
Question 3
If $a, b, c$ are in A.P. prove that :
(i) $\frac{1}{b c}, \frac{1}{c a}, \frac{1}{a b}$ are in A.P.
(ii) $(b+c)^{2}-a^{2},(c+a)^{2}-b^{2}+(a+b)^{2}-c^{2}$ are in A.P.
(iii) $\frac{1}{\sqrt{b}+\sqrt{c}}, \frac{1}{\sqrt{c}+\sqrt{a}}, \frac{1}{\sqrt{a}+\sqrt{b}}$ are in A.P.
Question 4
If $\frac{b+c-a}{a}, \frac{c+a-b}{b}, \frac{a+b-c}{c}$ are in A.P., show that $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A.P. provided $a+b+c \neq 0$.
Question 5
If $(b-c)^{2},(c-a)^{2},(a-b)^{2}$ are in A.P., then show that $\frac{1}{b-c}, \frac{1}{c-a}, \frac{1}{a-b}$ are in A.P.
Question 6
If $a, b, c$ are in A.P. show that
(i) $(a-c)^{2}=4(a-b)(b-c)$
(ii) $a^{3}+c^{3}+6 a b c=8 b^{3}$
(iii) $(a+2 b-c)(2 b+c-a)(c+a-b)=4 a b c$.
Hints to selected problems :
5. Add $a b+b c+c a-a^{2}-b^{2}-c^{2}$ to each term.
alternatively, let $\alpha=b-c, \beta=c-a, \gamma=a-b$, then $\alpha+\beta+\gamma=0$
6. Put $b=\frac{a+c}{2}$ on L.H.S. and R.H.S. in all the parts.
No comments:
Post a Comment