Processing math: 100%

KC Sinha Mathematics Solution Class 11 Chapter 17 Sequences and Series : AP Exercise 17.4

 Exercise 17.4

Page no 17.27

Question 1

If \frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b} are in A.P. and a+b+c \neq 0, prove that \frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+h} are in A.P.

Question 2

If a^{2}, b^{2}, c^{2} are in A.P., show that \frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b} are in A.P.

Question 3

If a, b, c are in A.P. prove that :
(i) \frac{1}{b c}, \frac{1}{c a}, \frac{1}{a b} are in A.P.
(ii) (b+c)^{2}-a^{2},(c+a)^{2}-b^{2}+(a+b)^{2}-c^{2} are in A.P.
(iii) \frac{1}{\sqrt{b}+\sqrt{c}}, \frac{1}{\sqrt{c}+\sqrt{a}}, \frac{1}{\sqrt{a}+\sqrt{b}} are in A.P.

Question 4

If \frac{b+c-a}{a}, \frac{c+a-b}{b}, \frac{a+b-c}{c} are in A.P., show that \frac{1}{a}, \frac{1}{b}, \frac{1}{c} are in A.P. provided a+b+c \neq 0.

Question 5

If (b-c)^{2},(c-a)^{2},(a-b)^{2} are in A.P., then show that \frac{1}{b-c}, \frac{1}{c-a}, \frac{1}{a-b} are in A.P.

Question 6

If a, b, c are in A.P. show that
(i) (a-c)^{2}=4(a-b)(b-c)
(ii) a^{3}+c^{3}+6 a b c=8 b^{3}
(iii) (a+2 b-c)(2 b+c-a)(c+a-b)=4 a b c.

Hints to selected problems :

5. Add a b+b c+c a-a^{2}-b^{2}-c^{2} to each term.
alternatively, let \alpha=b-c, \beta=c-a, \gamma=a-b, then \alpha+\beta+\gamma=0
6. Put b=\frac{a+c}{2} on L.H.S. and R.H.S. in all the parts.




















































No comments:

Post a Comment

Contact Form

Name

Email *

Message *