Processing math: 100%

KC Sinha Mathematics Solution Class 11 Chapter 19 Sum to n Terms of Special Series Exercise 19.1

 Exercise 19.1

Page no 19.15

Type 1

Question 

Find th1e sum of n t1erms of the series whose nth term is: 
1. n(n-1)(n+1)
2. n\left(n^{2}+1\right)
3. n(n+3)
4. n^{3}-3^{n}

Type 2

Question 

Find the sum of the following series to n terms :
5. 1^{3}+3^{3}+5^{3}+\ldots
6. 1^{2}+4^{2}+7^{2}+10^{2}+\ldots
7. 1^{2}-2^{2}+3^{2}-4^{2}+\ldots
8. 1.2 .3+2.3 .5+3.4 .7+\ldots
9. 1+(1+3)+(1+3+5)+\ldots
10. 1.2^{2}+2.3^{2}+3.4^{2}+\ldots
II. \left(n^{2}-1^{2}\right)+2\left(n^{2}-2^{2}\right)+3\left(n^{2}-3^{2}\right)+\ldots
12. 3.1^{2}+5.2^{2}+7.3^{2}+\ldots
13. 3.8+6.11+9.14+\ldots
14. 1.2+2.3+3.4+4.5+\ldots

Question 15

Find the nth term and hence the 20 th term of the series 2.4+4.6+6.8+\ldots Also find the sum of its 20 terms.

Question 16

Show that \frac{1.2^{2}+2 \cdot 3^{2}+\ldots+n(n+1)^{2}}{1^{2} \cdot 2+2^{2} \cdot 3+\ldots+n^{2}(n+1)}=\frac{3 n+5}{3 n+1}

Type 3

Question 17

Find 1+\frac{1}{1+2}+\frac{1}{1+2+3}+\ldots to n terms.
\left[\text { Hint }: t_{n}=\frac{1}{1+2+\ldots+n}=\frac{2}{n(n+1)}\right]

Question 18

Find the sum to n terms of the series
\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots

Question 19

Find \frac{1}{1+1^{2}+1^{4}}+\frac{2}{1+2^{2}+2^{4}}+\frac{3}{1+3^{2}+3^{4}}+\ldots to n terms

Question 20

Find the sum to infinity of the series
\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}+\ldots

Type 4

Question 21

Find the nth term and sum to n terms of the following series :
(i) 2+6+12+20+\ldots
(ii) 3+6+11+18+\ldots
(iii) 3+15+35+63+\ldots
(iv) 1+9+24+46+75+\ldots
(v) 1+5+12+22+\ldots
(vi) 3+7+13+21+31+\ldots

Question 22

Find the sum to 10 terms of the series 1+3+6+10+\ldots

Question 23

Natural numbers have been divided into groups in the following way : 1 ;(2,3) ;(4,5,6) ;(7,8,9,10); and so on.
Find the sum of numbers in the 50 th group.

Question 24

The odd natural numbers have been divided into groups as : (1,3) ;(5,7,9,11) ;(13,15, \ldots, 23);...
show that the sum of numbers in the nth group is 4 n^{3}.

Type 5

Question 25

Find the sum to n terms of the following series :
(i) 2+5+14+41+\ldots
(ii) 1+5+13+29+61+\ldots
(iii) 1+4+13+40+121+\ldots
(iv) 5+11+19+29+41+\ldots
(v) 3+5+9+17+33+\ldots












































































No comments:

Post a Comment

Contact Form

Name

Email *

Message *