Processing math: 100%

KC Sinha Mathematics Solution Class 11 Chapter 2 Relations Exercise 2.1

 Exercise 2.1 

Page no- 2.13

Type 1 

Question 1

(a)If A=\{a, b, c\} and B=\{x, y, z\}, then find  (i) A \times B(ii) B \times A(iii) A \times A
(b) If A=\{0\}, B=\{1,\{2\}\}, then find A \times B.
(c) Find A \times A when A=\{1,2,3\}.
(d) If A=\{1,2,3,5\} and B=\{0,1,3,5\}, then find A \times B and B \times A.
(c) If A=\{a, b, c\} and B=\{r\}, form the sets A \times B and B \times A.
Are these two products equal ?
(f) If G=\{7,8] and H=\{5,4,2\}, find G \times H and H \times G.

Page no- 2.13

Question 2

If A=\{1,2,3\}, B=\{1,2\}, C=\{3,5,7\}, then find :
(i) A \times(B \cup C)
(ii) A \times(B \cap C)
(iii) (A \cup B) \times C
(iv) (A \cap B) \times C
(v) (A \times B) \cup(A \times C)
(vi) (A \times B) \cap(A \times C)

Question 3

If A=\{a, b\}, B=(2,3\}, C=\{3,4\}, then find
(i) A \times(B \cup C)
(ii) A \times(B \cap C)
(iii) (A \times B) \cap(A \times C)

Question 4

If A=\{4,5\}, B=\{6,7\}, C=\{7,8\}, then find (A \times B) \cup(B \times C)

Question 5

If A=|1,2| and B=\{1,3\}, find (A \times B) \cup(B \times A)

Question 6

If A=\{1,2,3\}, B=\{3,4\}, C=\{4,5,6\}, then find
(i) (A \times B) \cup(B \times C)
(ii) (A \times B) \cap(B \times C)
(iii) (A \times B) \cup(A \times C)
(iv) (A \times B) \cap(A \times C)
(v) A \times(B \cap C)
(vi) A \times(B \cup C)

Question 7

If A=\{1,2,3, a, b\}, B=\{2,3, a, c, d\}, C=\{1, b, a, d, e\}. then test the validity of (A-B) \times C=(A \times C)-(B \times C)

Question 8

If A=\{2,3,4\}, B=\{3,5\}, C=\{2,6\}. Then verify that
(i) A \times(B \cup C)=(A \times B) \cup(A \times C)
(ii) A \times(B \cap C)=(A \times B) \cap(A \times C)
(iii) C \times(A-B)=C \times A-C \times B

Question 9

Let A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\} and D=\{5,6,7,8\}. Verify that
(i) A \times C \subseteq B \times D
(ii) A \times(B \cap C)=(A \times B) \cap(A \times C)

Question 10

If a \in\{2,4,6,9\} and b \in\{4,6,18,27\}. then form the set of all ordered pairs (a, b) such that a divides b and a<b.

Question 11

If a \in\{-1,2,3,4,5\} and b \in\{0,3,6\}, write down the set of all ordered pairs (a, b) such that a+b=5

Question 12

If the ordered pairs (x,-1) and (5, y) belong to the set \{(a, b): b=2 a-3\}, find the values of x and y.

Question 13

Express the following sets, Explicitly
(i) \left\{(x, y): x^{2}+y^{2}=25, x, y \in N\right\}
(ii) \{(x, y): 2 x+3 y=15, x, y \in W\}

Question 14

State whether following statements are true or false. If it is false, rewrite it correctly.
(i) If A=\{1,2\}, B=\{3,4\}, then A \times(B \cup \varphi)=\varphi
(ii) If A=\{1,2\}, B=\{3,4\}, then A \times(B \cap \varphi)=\varphi
(iii) If A=\{2,3\} and B=\{4,5\}, then A \times B=\{(2,4),(3,5)\}

Question 15

If A=\{-1,1\}, find A \times A \times A

Question 16

If A \times B=\{(p, q),(p, r),(m, q),(m, r)\}, find A and B.

Page no- 2.14

Type 2

Question 17

(i) If (x+2,4)=(5,2 x+y). find x and y.
(ii) If (x-2,2 y+1)=(y-1, x+2), find x and y.
(iii) If (x+1, y-2)=(3,1), find x and y.
(iv) If \left(\frac{a}{3}, b+5\right)=(-1,-2), find a and b.

Question 18

If A=\{a, b, c\} and B=\{p, q\}, then find
(i) n(A \times B)
(ii) n(B \times A)
(iii) n(A \times A)

Question 19

If A=\{a, b, c, d\} and B is equivalent to A, then find the number of elements in
(i) A \times B
(ii) B \times B

Question 20

Let A and B be two sets such that n(A)=3 and n(B)=2. If (x, 1),(y, 2),(z, 1) are in A \times B, find A and B, where x, y, z are distinct elements.

Question 21

If A=\{a, b, c\} and some elements, of A \times B are (a, p),(b, q),(c, p). Write down the remaining elements of A \times B if n(A \times B)=6.

Question 22

If B=\{2,3,5\} and (a, 2),(b, 3),(c, 5) are in A \times B, find A and the remaining elements of A \times B such that n(A \times B) is least.

Type 3

Question 23

If A=\{1,2,4\} and B=\{1,2,3\}, represent graphically the following sets
(i) A \times B
(ii) A \times A

Question 24

If A=\{1,2,3\}, B=\{4,5\}, represent the following products by arrow diagrams :
(i) A \times B
(ii) B \times B

Type 4

Question 25

Prove that (i) (A \cup B) \times C=(A \times C) \cup(B \times C)
(ii) (A \cap B) \times C=(A \times C) \cap(B \times C)

Question 26

If A \times B \subseteq X \times Y and A \times B \neq \phi, then prove that A \subseteq X and B \subseteq Y.

Question 27

Prove that A \times A=B \times B \Rightarrow A=B

















































































No comments:

Post a Comment

Contact Form

Name

Email *

Message *