Exercise 2.1
Page no- 2.13
Type 1
Question 1
(a)If A=\{a, b, c\} and B=\{x, y, z\}, then find (i) A \times B(ii) B \times A(iii) A \times A
(b) If A=\{0\}, B=\{1,\{2\}\}, then find A \times B.
(c) Find A \times A when A=\{1,2,3\}.
(d) If A=\{1,2,3,5\} and B=\{0,1,3,5\}, then find A \times B and B \times A.
(c) If A=\{a, b, c\} and B=\{r\}, form the sets A \times B and B \times A.
Are these two products equal ?
(f) If G=\{7,8] and H=\{5,4,2\}, find G \times H and H \times G.
Page no- 2.13
Question 2
If A=\{1,2,3\}, B=\{1,2\}, C=\{3,5,7\}, then find :
(i) A \times(B \cup C)
(ii) A \times(B \cap C)
(iii) (A \cup B) \times C
(iv) (A \cap B) \times C
(v) (A \times B) \cup(A \times C)
(vi) (A \times B) \cap(A \times C)
Question 3
If A=\{a, b\}, B=(2,3\}, C=\{3,4\}, then find
(i) A \times(B \cup C)
(ii) A \times(B \cap C)
(iii) (A \times B) \cap(A \times C)
Question 4
If A=\{4,5\}, B=\{6,7\}, C=\{7,8\}, then find (A \times B) \cup(B \times C)
Question 5
If A=|1,2| and B=\{1,3\}, find (A \times B) \cup(B \times A)
Question 6
If A=\{1,2,3\}, B=\{3,4\}, C=\{4,5,6\}, then find
(i) (A \times B) \cup(B \times C)
(ii) (A \times B) \cap(B \times C)
(iii) (A \times B) \cup(A \times C)
(iv) (A \times B) \cap(A \times C)
(v) A \times(B \cap C)
(vi) A \times(B \cup C)
Question 7
If A=\{1,2,3, a, b\}, B=\{2,3, a, c, d\}, C=\{1, b, a, d, e\}. then test the validity of (A-B) \times C=(A \times C)-(B \times C)
Question 8
If A=\{2,3,4\}, B=\{3,5\}, C=\{2,6\}. Then verify that
(i) A \times(B \cup C)=(A \times B) \cup(A \times C)
(ii) A \times(B \cap C)=(A \times B) \cap(A \times C)
(iii) C \times(A-B)=C \times A-C \times B
Question 9
Let A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\} and D=\{5,6,7,8\}. Verify that
(i) A \times C \subseteq B \times D
(ii) A \times(B \cap C)=(A \times B) \cap(A \times C)
Question 10
If a \in\{2,4,6,9\} and b \in\{4,6,18,27\}. then form the set of all ordered pairs (a, b) such that a divides b and a<b.
Question 11
If a \in\{-1,2,3,4,5\} and b \in\{0,3,6\}, write down the set of all ordered pairs (a, b) such that a+b=5
Question 12
If the ordered pairs (x,-1) and (5, y) belong to the set \{(a, b): b=2 a-3\}, find the values of x and y.
Question 13
Express the following sets, Explicitly
(i) \left\{(x, y): x^{2}+y^{2}=25, x, y \in N\right\}
(ii) \{(x, y): 2 x+3 y=15, x, y \in W\}
Question 14
State whether following statements are true or false. If it is false, rewrite it correctly.
(i) If A=\{1,2\}, B=\{3,4\}, then A \times(B \cup \varphi)=\varphi
(ii) If A=\{1,2\}, B=\{3,4\}, then A \times(B \cap \varphi)=\varphi
(iii) If A=\{2,3\} and B=\{4,5\}, then A \times B=\{(2,4),(3,5)\}
Question 15
If A=\{-1,1\}, find A \times A \times A
Question 16
If A \times B=\{(p, q),(p, r),(m, q),(m, r)\}, find A and B.
Page no- 2.14
Type 2
Question 17
(i) If (x+2,4)=(5,2 x+y). find x and y.
(ii) If (x-2,2 y+1)=(y-1, x+2), find x and y.
(iii) If (x+1, y-2)=(3,1), find x and y.
(iv) If \left(\frac{a}{3}, b+5\right)=(-1,-2), find a and b.
Question 18
If A=\{a, b, c\} and B=\{p, q\}, then find
(i) n(A \times B)
(ii) n(B \times A)
(iii) n(A \times A)
Question 19
If A=\{a, b, c, d\} and B is equivalent to A, then find the number of elements in
(i) A \times B
(ii) B \times B
Question 20
Let A and B be two sets such that n(A)=3 and n(B)=2. If (x, 1),(y, 2),(z, 1) are in A \times B, find A and B, where x, y, z are distinct elements.
Question 21
If A=\{a, b, c\} and some elements, of A \times B are (a, p),(b, q),(c, p). Write down the remaining elements of A \times B if n(A \times B)=6.
Question 22
If B=\{2,3,5\} and (a, 2),(b, 3),(c, 5) are in A \times B, find A and the remaining elements of A \times B such that n(A \times B) is least.
Type 3
Question 23
If A=\{1,2,4\} and B=\{1,2,3\}, represent graphically the following sets
(i) A \times B
(ii) A \times A
Question 24
If A=\{1,2,3\}, B=\{4,5\}, represent the following products by arrow diagrams :
(i) A \times B
(ii) B \times B
Type 4
Question 25
Prove that (i) (A \cup B) \times C=(A \times C) \cup(B \times C)
(ii) (A \cap B) \times C=(A \times C) \cap(B \times C)
Question 26
If A \times B \subseteq X \times Y and A \times B \neq \phi, then prove that A \subseteq X and B \subseteq Y.
Question 27
Prove that A \times A=B \times B \Rightarrow A=B
No comments:
Post a Comment