Exercise 22.4
Page no 22.42
Type 1
Question 1
Find the parametric equations of the following circles :
(i) x^{2}+y^{2}=9
(ii) x^{2}+y^{2}+2 x-4 y-1=0
(iii) x^{2}+y^{2}-2 x+4 y-4=0
(iv) 3 x^{2}+3 y^{2}+4 x-6 y-4=0
Question 2
Find the cartesian equations of the following curves whose parametric equations are :
(i) x=5 \cos \theta, y=5 \sin \theta
(ii) x=a+c \cos \alpha, y=b+c \sin \alpha
(iii) x=3 \cos \alpha \quad y=3 \sin \alpha
(iv) x=1+3 \cos \theta, y=2-3 \sin \theta
(v) x=\cos \theta+\sin \theta, y=\sin \theta-\cos \theta
(vi) x=\frac{20 t}{4+t^{2}}, y=\frac{5\left(4-t^{2}\right)}{4+t^{2}}
Question 3
If curve is a circle, find its center and radius.
Prove that :
x \cos \theta+y \sin \theta=a \text { and } x \sin \theta-y \cos \theta=b
are the parametric equations of a circle for all \theta satisfying 0 \leq \theta<2 \pi.
Page no 22.43
Question 4
Show that
x=a \cos \theta-b \sin \theta \text { and } y=a \sin \theta+b \cos \theta
represent a circle where \theta is the parameter.
Question 5
Show that the point (x, y), where
x=5 \cos \theta, y=-3+5 \sin \theta
lies on a circle for all values of \theta.
Question 6
Show that the point \left(x_{1}, y\right). where
x=a+r \cos \theta, y=b+r \sin \theta \text {, }
lies on a circle for all values of \theta.
No comments:
Post a Comment