Exercise 28.2
Page no 28.20
Question 1
If f(x)=x^{2}+x+2, when x<1
=x^{4}+3, \quad \text { when } x>1
then does \lim _{x \rightarrow 1} f(x) exist ?
Question 2
If f(x)=x^{3}, when x<-1 =x^{5}, when x>-1 =-1, when x=-1 then find \lim _{x \rightarrow-1} f(x).
Question 3
Find \lim _{x \rightarrow 2} \phi(x), where
\begin{aligned}\phi(x) &=5 ; \text { when } x \neq 2 \\&=3, \text { when } x=2\end{aligned}
Question 4
(i) Evaluate \lim _{x \rightarrow 0} f(x), where
f(x)=\left\{\begin{array}{cc}\frac{x}{|x|}, & x \neq 0 \\ 0, & x=0\end{array}\right.
(ii) Evaluate \lim _{x \rightarrow 0} f(x), where
f(x)=\left\{\begin{array}{cc}\frac{|x|}{x}, & x \neq 0 \\ 0, & x=0\end{array}\right.
Question 5
Prove that \lim _{x \rightarrow 1} \frac{x^{2}-1}{|x-1|} does not exist.
Question 6
If f(x)=\left\{\begin{array}{cc}4, & x \geq 3 \\ x+1, & x<3\end{array}\right.
Find \lim _{x \rightarrow 3} f(x)
Question 7
(i) Let f(x)=\left\{\begin{array}{ll}x+1, & x \geq 0 \\ x-1, & x<0\end{array}\right., prove that \lim _{x \rightarrow 0} f(x) does not exist.
(ii) Let f(x)=\left\{\begin{array}{cc}x^{2}-1, & x \leq 1 \\ -x^{2}-1, & x>1\end{array}\right. prove that \lim _{x \rightarrow 1} f(x) does not exist.
Question 8
Evaluate the following one sided limits :
(i) \lim _{x \rightarrow 2-0}[x]
(ii) \lim _{x \rightarrow-5^{+}}[-x]
(iii) \lim _{x \rightarrow 0^{-}} \frac{\left|x^{3}\right|}{|x|}
(iv) \lim _{x \rightarrow 3^{-}} x[x]
Page no 28.21
Question 9
Evaluate the following one sided limits :
(i) \lim _{x \rightarrow 0^{-}}(2-\cot x)
(ii) \lim _{x \rightarrow-\frac{\pi}{2}+}(\sec x)
(iii) \lim _{x \rightarrow 0^{-}}(1+\operatorname{cosec} x)
Question 10
Evaluate the following one sided limits :
(i) \lim _{x \rightarrow 2^{+}} \frac{x-3}{x^{2}-4}
(ii) \lim _{x \rightarrow 0^{+}} \frac{1}{3 x}
(iii) \lim _{x \rightarrow 2^{-}} \frac{x-3}{x^{2}-4}
(iv) \lim _{x \rightarrow-8^{+}} \frac{2 x}{x+8}
(v) \lim _{x \rightarrow 0^{+}} \frac{2}{x^{1 / 5}}
Question 11
Find \lim _{x \rightarrow 5^{+}} f(x) and \lim _{x \rightarrow 5^{-}} f(x), where f(x)=|x|-5
Question 12
Find \lim _{x \rightarrow 0} f(x) and \lim _{x \rightarrow 1} f(x), where f(x)=\left\{\begin{array}{cc}2 x+3, & x \leq 0 \\ 3(x+1), & x>0\end{array}\right.
Question 13
Find the following limits if they exist :
(i) \lim _{x \rightarrow 1}[x]
(ii) \lim _{x \rightarrow \frac{5}{2}}[x]
(iii) \lim _{x \rightarrow \frac{7}{3}}[-x]
Question 14
(i) Find \lim _{x \rightarrow-1-0} \frac{\sqrt{x^{2}-5 x-6}}{x+3}
(ii) Find \lim _{x \rightarrow 2^{-}} \frac{x^{2}-4 x+4}{x-2}
(iii) Find \lim _{x \rightarrow-3^{+}} \frac{[x-7]}{[x+4]}
Question 15
If
\begin{aligned} f(x) &=\frac{\sin 3 x}{x}, \text { when } x<0 \\ &=\frac{\tan b x}{x}, \text { when } x>0 \text { and } \lim _{x \rightarrow 0} f(x) \text { exists, find the value of } b \text {. } \end{aligned}
Question 16
Let f(x)=\left\{\begin{array}{cc}x+2, & x \leq-1 \\ c x^{2}, & x>-1\end{array}\right.; Find c if \lim _{x \rightarrow-1} f(x) exists.
No comments:
Post a Comment