Processing math: 100%

KC Sinha Mathematics Solution Class 11 Chapter 6 Trigonometric Functions Exercise 6.2

 Exercise 6.2

Page no 6.31

Type 1

Question 1

Express each of the following products into sums or difference of sines and cosines.
(i) 2 \cos 3 \theta \cdot \sin 2 \theta
(ii) 2 \sin 5 \theta \cdot \cos 3 \theta
(iii) \cos 9 \theta \cdot \cos 4 \theta
(iv) \sin 75^{\circ} \cdot \cos 15^{\circ}

Page no 6.32

Question 2

Prove that \sin 25^{\circ} \cos 115^{\circ}=\frac{1}{2}\left(\sin 40^{\circ}-1\right)

Question 3

Prove that
(i) \sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ}=\frac{3}{16}
(ii) \cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ}=\frac{1}{8}

Question 4

Prove that
(i) \cos 10^{\circ} \cos 30^{\circ} \cos 50^{\circ} \cos 70^{\circ}=\frac{3}{16}
(ii) \tan 20^{\circ} \tan 30^{\circ} \tan 40^{\circ} \tan 80^{\circ}=1

Question 5

Prove that
(i) 4 \cos \theta \cos \left(\frac{\pi}{3}+\theta\right) \cos \left(\frac{\pi}{3}-\theta\right)=\cos 3 \theta
(ii) \cos 2 x \cos \frac{x}{2}-\cos 3 x \cos \frac{9 x}{2}=\sin 5 x \sin \frac{5 x}{2}

Question 6

Show that : \sin (B-C) \cos (A-D)+\sin (C-A) \cos (B-D) +\sin (A-B) \cos (C-D)=0

Question 7

If \alpha+\beta=90^{\circ}, show that the maximum value of \cos \alpha, \cos \beta is \frac{1}{2}

Question 8

Prove that \tan \theta \tan \left(60^{\circ}-\theta\right) \cdot \tan \left(60^{\circ}+\theta\right)=\tan 3 \theta

Question 9

If \cos \alpha=\frac{1}{\sqrt{2}}, \sin \beta=\frac{1}{\sqrt{3}}, show that \tan \frac{\alpha+\beta}{2} \cot \frac{\alpha-\beta}{2}=5+2 \sqrt{6} or 5-2 \sqrt{6}

[Hint : Since \cos \alpha=\frac{1}{\sqrt{2}}(+ ve), therefore, \alpha lies in the Ist or 4 th gradient and hence \sin \alpha=\frac{1}{\sqrt{2}} or -\frac{1}{\sqrt{2}} 1

Type 2

Question 10

Express each of the following as product of sines and cosines :
(i) \cos 9 \theta+\cos 3 \theta
(ii) \sin 2 \theta+\cos 4 \theta
(iii) \cos 12 \theta-\cos 4 \theta
(iv) \sin 9 \theta+\sin 5 \theta

Question 11

Prove that
(i) \sin 65^{\circ}+\cos 65^{\circ}=\sqrt{2} \cos 20^{\circ}
(ii) \sin 47^{\circ}+\cos 77^{\circ}=\cos 17^{\circ}

Question 12

Prove that
(i) \frac{\cos 7 x+\cos 5 x}{\sin 7 x-\sin 5 x}=\cot x
(ii) \frac{\cos 9 x-\cos 5 x}{\sin 17 x-\sin 3 x}=\frac{-\sin 2 x}{\cos 10 x}
(iii) \frac{\sin x+\sin 3 x}{\cos x+\cos 3 x}=\tan 2 x
(iv) \cot 4 x(\sin 5 x+\sin 3 x)=\cot x(\sin 5 x-\sin 3 x)
(v) \frac{\sin x-\sin 3 x}{\sin ^{2} x-\cos ^{2} x}=2 \sin x
[Hint : \left.\sin ^{2} A-\cos ^{2} B=\cos (A+B) \cos (A-B)\right]

Question 13

Prove that
(i) \frac{\cos 10^{\circ}-\sin 10^{\circ}}{\cos 10^{\circ}+\sin 10^{\circ}}=\tan 35^{\circ}
(ii) \cos 80^{\circ}+\cos 40^{\circ}-\cos 20^{\circ}=0
(iii) \sin 10^{\circ}+\sin 20^{\circ}+\sin 40^{\circ}+\sin 50^{\circ}=\sin 70^{\circ}+\sin 80^{\circ}
(iv) \cos 20^{\circ}+\cos 100^{\circ}+\cos 140^{\circ}=0

Question 14

Prove that
(i) \cos \frac{\pi}{5}+\cos \frac{2 \pi}{5}+\cos \frac{6 \pi}{5}+\cos \frac{7 \pi}{5}=0
(ii) \cos \frac{\pi}{12}-\sin \frac{\pi}{12}=\frac{1}{\sqrt{2}}
(iii) \sin \frac{5 \pi}{18}-\cos \frac{4 \pi}{9}=\sqrt{3} \sin \frac{\pi}{9}
(iv) \cos \left(\frac{3 \pi}{4}+x\right)-\cos \left(\frac{3 \pi}{4}-x\right)=-\sqrt{2} \sin x
(v) \cos \left(\frac{\pi}{4}+x\right)+\cos \left(\frac{\pi}{4}-x\right)=\sqrt{2} \cos x

Question 15

Prove that \cos \alpha+\cos \beta+\cos \gamma+\cos (\alpha+\beta+\gamma)
=4 \cos \frac{\alpha+\beta}{2} \cdot \cos \frac{\beta+\gamma}{2} \cdot \cos \frac{\gamma+\alpha}{2}

Question 16

Prove that
(i) \frac{\sin x-\sin y}{\cos x+\cos y}=\tan \frac{x-y}{2}
(ii) \frac{\sin x+\sin y}{\cos x+\cos y}=\tan \frac{x+y}{2}
(iii) \frac{\sin x+\sin y}{\sin x-\sin y}=\tan \left(\frac{x+y}{2}\right) \cdot \cot \left(\frac{x-y}{2}\right)

Question 17

Prove that
(i) \sin 3 x+\sin 2 x-\sin x=4 \sin x \cos \frac{x}{2} \cos \frac{3 x}{2}
(ii) \sin x+\sin 3 x+\sin 5 x+\sin 7 x=4 \cos x \cos 2 x \sin 4 x
(iii) \frac{\sin \theta+\sin 3 \theta+\sin 5 \theta}{\cos \theta+\cos 3 \theta+\cos 5 \theta}=\tan 3 \theta
(iv) \frac{\cos 4 \theta+\cos 3 \theta+\cos 2 \theta}{\sin 4 \theta+\sin 3 \theta+\sin 2 \theta}=\cot 3 \theta
(v) \frac{\sin \theta+2 \sin 3 \theta+\sin 5 \theta}{\sin 3 \theta+2 \sin 5 \theta+\sin 7 \theta}=\frac{\sin 3 \theta}{\sin 5 \theta}
(vi) \frac{\cos 3 \theta+2 \cos 5 \theta+\cos 7 \theta}{\cos \theta+2 \cos 3 \theta+\cos 5 \theta}=\cos 2 \theta-\sin 2 \theta, \tan 3 \theta
(vii) \frac{\sin 5 \theta-2 \sin 3 \theta+\sin \theta}{\cos 5 \theta-\cos \theta}=\tan \theta

Page no 6.34

Question 18

If \operatorname{cosec} A+\sec A=\operatorname{cosec} B+\sec B, prove that \tan A \cdot \tan B=\cot \frac{A+B}{2}

Question 19

Prove that
(i) (\cos \alpha-\cos \beta)^{2}+(\sin \alpha-\sin \beta)^{2}=4 \sin ^{2}\left(\frac{\alpha-\beta}{2}\right)
(ii) \sin \alpha+\sin \beta+\sin \gamma-\sin (\alpha+\beta+\gamma)=4 \sin \left(\frac{\alpha+\beta}{2}\right) \cdot \sin \left(\frac{\beta+\gamma}{2}\right) \cdot \sin \left(\frac{\gamma+\alpha}{2}\right)

Type 3

Question 20

If \frac{\cos (A-B)}{\cos (A+B)}+\frac{\cos (C+D)}{\cos (C-D)}=0, prove that \tan A \cdot \tan B \cdot \tan C \cdot \tan D=-1

Question 21

If \sin 2 A=\lambda \sin 2 B, prove that \frac{\tan (A+B)}{\tan (A-B)}=\frac{\lambda+1}{\lambda-1}

Question 22

If \cos (\alpha+\beta) \sin (\gamma+\delta)=\cos (\alpha-\beta) \cdot \sin (\gamma-\delta), prove that \cot \alpha \cdot \cot \beta \cdot \cot \gamma=\cot \delta

Question 23

If y \sin \phi=x \sin (2 \theta+0) show that (x+y) \cot (\theta+0)=(y-x) \cot \theta







































































No comments:

Post a Comment

Contact Form

Name

Email *

Message *