Processing math: 0%

KC Sinha Mathematics Solution Class 11 Chapter 9 Sine and Cosine Formulae and Their Applications Exercise 9.1

 Exercise 9.1

 Page no 9.32

Type -1 

Question 1

If the angles of a \triangle A B C are in the ratio 2: 3: 7, show that a: b: c=\sqrt{2}: 2:(\sqrt{3}+1)

Question 2

If in \triangle A B C a=4, b=12, \angle B=30^{\circ} then find \sin A

Question 3

In any \Delta A B C, prove that \frac{\sin B}{\sin (B+C)}=\frac{b}{a}

Question 4

If the two angles of a triangle are 30^{\circ} and 45^{\circ} and the included side is (\sqrt{3}+1) \mathrm{cm}, find the other sides of the triangle.

Question 5

The angles of a triangle are as 7: 2: 1; prove that the ratio of the least side to the greatest is 3-\sqrt{5}: 2

Question 6

In \triangle A B C, if c=3.4 \mathrm{~cm}, A=25^{\circ}, B=85^{\circ}, find a, b and angle C. \left(\sin 25^{\circ}=0.4226, \sin 85^{\circ}=0.9962\right)

Type -2

Question 7

Find the greatest angle of \triangle A B C if
(i) a=2, b=\sqrt{6}, c=\sqrt{3}-1
(ii) a=m, b=n, c=\sqrt{m^{2}+m n+n^{2}}

Question 8

In \triangle A B C, if a=25, b=52 and c=63, find \cos A.

Question 9

In a \triangle A B C, if a=18, b=24, c=30, find \cos A, \cos B, \cos C.

Question 10

In any \triangle A B C if B=60^{\circ}, then prove that (c-a)^{2}=b^{2}-c a.

Question 11

If the sides of a triangle are 3,5 and 7, prove that the triangle is obtuse angled triangle and find the obtuse angle.

Question 12

In any \triangle A B C, prove that
\frac{b^{2}+c^{2}-a^{2}}{c^{2}+a^{2}-b^{2}}=\frac{\tan B}{\tan A}

Question 13

If in a \triangle A B C, c^{4}-2\left(a^{2}+b^{2}\right) c^{2}+a^{4}+a^{2} h^{2}+h^{4}=a prove that C=60^{2} or 120^{\circ}.


Question 14

In a \triangle A B C. if a^{4}+b^{4}+c^{4}=2 c^{2}\left(a^{2}+b^{2}\right), prove that C=45^{\circ} or 135^{\circ}

Page no 9.33

Type -3

Question 15

In \triangle A B C, prove that
(i) a(\cos B+\cos C-1)+b(\cos C+\cos A-1)+c(\cos A+\cos B-1)=0
(ii) a \cos (A+B+C)-b \cos (B+A)-c \cos (A+C)=0

Question 16

In any \triangle A B C, prove that
\frac{c-b \cos A}{b-c \cos A}=\frac{\cos B}{\cos C}

Question 17

In \triangle A B C, a=4, b=6, c=8, then find the value of 8 \cos A+16 \cos B+4 \cos C

Type -4

Question 18

In any \triangle A B C, prove that
(i) (b+c) \cos \frac{B+C}{2}=a \cos \frac{B-C}{2}
(ii) \frac{a+b}{c}=\frac{\cos \frac{A-B}{2}}{\sin \frac{C}{2}}
(iii) \frac{a-b}{c}=\frac{\sin \frac{A-B}{2}}{\cos \frac{C}{2}} 
(iv) If b+c=2 a \cos \frac{B-C}{2}, then prove that A=60^{\circ}

Question 19

In any \triangle A B C, prove that
(i) \left(b^{2}-c^{2}\right) \cos 2 A+\left(c^{2}-a^{2}\right) \cos 2 B+\left(a^{2}-b^{2}\right) \cos 2 C=0
(ii) \frac{1+\cos (A-B) \cos C}{1+\cos (A-C) \cos B}=\frac{a^{2}+b^{2}}{a^{2}+c^{2}}
(iii) \frac{b^{2}-c^{2}}{\cos B+\cos C}+\frac{c^{2}-a^{2}}{\cos C+\cos A}+\frac{a^{2}-b^{2}}{\cos A+\cos B}=0
(iv) \frac{a^{2} \sin (B-C)}{\sin B+\sin C}+\frac{b^{2} \sin (C-A)}{\sin C+\sin A}+\frac{c^{2} \sin (A-B)}{\sin A+\sin B}=0
(v) \frac{b^{2}-c^{2}}{a^{2}}=\frac{\sin (B-C)}{\sin (B+C)}
(vi) \tan \left(\frac{A}{2}+B\right)=\frac{c+b}{c-b} \tan \frac{A}{2}

Question 20

In any \triangle A B C, prove that
a^{2}\left(\cos ^{2} B-\cos ^{2} C\right)+b^{2}\left(\cos ^{2} C-\cos ^{2} A\right)+c^{2}\left(\cos^{2} A-\cos ^{2} B\right)=0

Question 21

If A=2 B, then prove that either c=b or a^{2}=b(c+b) [Hint : A=2 B \Rightarrow \sin A=\sin 2 B ]

Page no 9.34

Question 22

In any \triangle A B C, prove that
\frac{\cos A}{a}+\frac{a}{b c}=\frac{\cos B}{b}+\frac{b}{c a}=\frac{\cos C}{c}+\frac{c}{a b}

Question 23

In \triangle A B C if A+C=2 B, prove that 2 \cos \frac{A-C}{2}=\frac{a+c}{\sqrt{a^{2}-a c+c^{2}}}

Question 24

In any \triangle A B C, prove that
(i) \frac{\cos 2 A}{a^{2}}-\frac{\cos 2 B}{b^{2}}=\frac{1}{a^{2}}-\frac{1}{b^{2}}
(ii) \left(b^{2}-c^{2}\right) \sin ^{2} A+\left(c^{2}-a^{2}\right) \sin ^{2} B+\left(a^{2}-b^{2}\right) \sin ^{2} C=0
(iii) \frac{a^{2} \sin (B-C)}{\sin A}+\frac{b^{2} \sin (C-A)}{\sin B}+\frac{c^{2} \sin (A-B)}{\sin C}=0

Question 25

If the median A D of \triangle A B C be perpendicular to side A B then prove that \tan A+2 \tan B=0
[Hint : A D=B D \sin B and \frac{C D}{\sin \left(A-90^{\circ}\right)}=\frac{A D}{\sin C}
\therefore \sin C+\cos A \sin B=0]

Question 26

In a \triangle A B C, if \tan \frac{A}{2}, \tan \frac{B}{2}, \tan \frac{C}{2} are in A \cdot P, prove that \cos A, \cos B, \cos C are also in A . P

Question 27

If \frac{\sin A}{\sin C}=\frac{\sin (A-B)}{\sin (B-C)}, prove that a^{2}, b^{2}, c^{2} are in A \cdot P

Type -5

Question 28

If in \triangle A B C, a=15, b=36, c=39 find \tan \frac{A}{2}

Question 29

In a \triangle A B C, if a=18, b=24, c=30, find
(i) \tan \frac{A}{2}, \tan \frac{B}{2}, \tan \frac{C}{2}
(ii) \sin A, \sin B, \sin C

Question 30

In any \triangle A B C, prove that
(i) \frac{b-c}{a} \cos ^{2} \frac{A}{2}+\frac{c-a}{b} \cos ^{2} \frac{B}{2}+\frac{a-b}{c} \cos ^{2} \frac{C}{2}=0
(ii) (b-c) \cot \frac{A}{2}+(c-a) \cot \frac{B}{2}+(a-b) \cot \frac{C}{2}=0

Question 31

In \triangle A B C, prove that
(i) (a+b+c)\left(\tan \frac{A}{2}+\tan \frac{B}{2}\right)=2 \cot \frac{C}{2}
(ii) 1-\tan \frac{A}{2} \tan \frac{B}{2}=\frac{2 c}{a+b+c}
(iii) (b-c) \cot \frac{A}{2}+(c-a) \cot \frac{B}{2}+(a-b) \cot \frac{C}{2}=0

Page no 9.35

Question 32

In any \triangle A B C, prove that : \frac{\cos ^{2} \frac{A}{2}}{a}+\frac{\cos ^{2} \frac{B}{2}}{b}+\frac{\cos ^{2} \frac{C}{2}}{c}=\frac{s^{2}}{a b c}

Question 33

In \triangle A B C, prove that
(i) \left(\cot \frac{A}{2}+\cot \frac{B}{2}\right)\left(a \sin ^{2} \frac{B}{2}+b \sin ^{2} \frac{A}{2}\right)=c \cot \frac{C}{2}
(ii) \tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2}=\sqrt{\left(1-\frac{a}{s}\right)\left(1-\frac{b}{s}\right)\left(1-\frac{c}{s}\right)}

Question 34

If in a \Delta A B C, \sin A, \sin B, \sin C are in A. P., show that 3 \tan \frac{A}{2} \tan \frac{C}{2}=1 [Hint : \sin A, \sin B, \sin C are in A.P. \Rightarrow a, b, c are in A.P.]

Question 35

In any \triangle A B C, prove that (b+c-a)\left(\cot \frac{B}{2}+\cot \frac{C}{2}\right)=2 a \cot \frac{A}{2}

Type -6

Question 36

In a \triangle A B C, the sum of two sides is \sqrt{3} times their difference and the included angle is 60^{\circ}; find the difference of the remaining angles.

Question 37

If in \triangle A B C, the difference of two angles is 60^{\circ} and the remaining angle is 30^{\circ}, then find the ratio of the sides opposite to first two angles.

Type -7

Question 38

In a \triangle A B C, if a=18, b=24, c=30, find the area of \triangle A B C.

Question 39

The sides of a triangle are in A. P. Its area is \frac{3}{5} th of an equilateral triangle of
the same perimeter, show that the sides are in the proportion 3: 5: 7.

Question 40

The sides of a quadrilateral are 3,4,5 and 6 \mathrm{cms}. The sum of a pair of opposite angles is 120^{\circ}. Show that the area of the quadrilateral is 3 \sqrt{30} \mathrm{sq} . \mathrm{cm}.






















No comments:

Post a Comment

Contact Form

Name

Email *

Message *