Exercise 10.1
Question 1
यदि (If) f(x)=\frac{x-2}{x^{2}-3 x+2} , when x≠2=1 , when x=2
तो (then find) f^{\prime}(2)
Sol :
When x≠2 , f(x)=\frac{x-2}{x^{2}-3 x+2}
=\frac{x -2}{(x-1)(x-2)}=\frac{1}{x-1}
f(2)=\left\{\begin{array}{cl}\frac{1}{x-1} & \text { when } x\neq 2 \\ 1 & , \text{when }x=2\end{array}\right.
f^{\prime}(2)=\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}
=\lim _{h \rightarrow 0} \frac{\frac{1}{2+h-1}-1}{h}
=\lim _{h \rightarrow 0} \frac{\frac{1}{1+h}-1}{h}
=\lim _{h \rightarrow 0} \frac{\frac{1-(1+h)}{1+h}}{h}
=\lim_{h \rightarrow 0} \frac{1-1-h}{h(1+h)}
=\lim_{h \rightarrow 0} \frac{-h}{h(1+h)}
=\frac{-1}{1+0}=-1
Question 2
यदि (If) f(x)=x+x^{3} \sin \frac{1}{x} , when x≠0=0 , when x=0
तो x=0 पर f(x) का अवकलन निकालें (then find the derivative of f(x) at x=0)
Sol :
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}
=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}
=\lim _{h \rightarrow 0} \frac{h+h^{3} \cdot \sin \frac{1}{h}-0}{h}
=\lim _{h \rightarrow 0} \frac{h\left(1+h^{2} \sin \frac{1}{h}\right)}{h}
=\lim _{h \rightarrow 0}\left[1+h \cdot \frac{\sin \frac{1}{h}}{\frac{1}{h}}\right]
=\lim_{h \rightarrow 0}(1)+\lim_{h \rightarrow 0} h . \lim_{h \rightarrow 0} \frac{\sin \frac{1}{h}}{\frac{1}{h}}
=1+0×1=1
Sol :
A+x=-1
L.H.D
f^{\prime}\left(-1^{-}\right)=\lim_{h\rightarrow 0^-} \frac{f(-1-h)-f(-1)}{-h}
=\lim _{h \rightarrow 0} \frac{|-1-h+1|-|-1+1|}{-h}
=\lim_{h\rightarrow 0} \frac{|-h|-0}{-h}
=\lim _{h \rightarrow 0} \frac{h}{-h}=-1
R.H.D
f^{\prime}\left(-1^{+}\right)=\lim _{h \rightarrow 0^{+}} \frac{f(-1+4)-f(-1)}{h}
=\lim_{h \rightarrow 0} \frac{|-1+h+1|-|-1+1|}{h}
=\lim_{h \rightarrow 0} \frac{|h|-0}{h}
=\lim _{h \rightarrow 0} \frac{h}{h}=1
f^{\prime}\left(-1^{-}\right) \neq f\left(-1^{+}\right)
[]
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}
=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}
=\lim _{h \rightarrow 0} \frac{h+h^{3} \cdot \sin \frac{1}{h}-0}{h}
=\lim _{h \rightarrow 0} \frac{h\left(1+h^{2} \sin \frac{1}{h}\right)}{h}
=\lim _{h \rightarrow 0}\left[1+h \cdot \frac{\sin \frac{1}{h}}{\frac{1}{h}}\right]
=\lim_{h \rightarrow 0}(1)+\lim_{h \rightarrow 0} h . \lim_{h \rightarrow 0} \frac{\sin \frac{1}{h}}{\frac{1}{h}}
=1+0×1=1
Question 3
क्या (Is) |x+1| पर अवकलनी differentiable at x=-1 ?Sol :
A+x=-1
L.H.D
f^{\prime}\left(-1^{-}\right)=\lim_{h\rightarrow 0^-} \frac{f(-1-h)-f(-1)}{-h}
=\lim _{h \rightarrow 0} \frac{|-1-h+1|-|-1+1|}{-h}
=\lim_{h\rightarrow 0} \frac{|-h|-0}{-h}
=\lim _{h \rightarrow 0} \frac{h}{-h}=-1
R.H.D
f^{\prime}\left(-1^{+}\right)=\lim _{h \rightarrow 0^{+}} \frac{f(-1+4)-f(-1)}{h}
=\lim_{h \rightarrow 0} \frac{|-1+h+1|-|-1+1|}{h}
=\lim_{h \rightarrow 0} \frac{|h|-0}{h}
=\lim _{h \rightarrow 0} \frac{h}{h}=1
f^{\prime}\left(-1^{-}\right) \neq f\left(-1^{+}\right)
[]
No comments:
Post a Comment