Processing math: 100%

KC Sinha Mathematics Solution Class 12 Chapter 11 अवकलन (Differentiation) Exercise 11.2 (Q10-Q11)

Exercise 11.2







Question 10

निम्नलिखित फलनों को x के सापेक्ष अवकलित करें।
[Differentiating the following function with respect to x]

(i) \tan ^{-1}\left(\frac{a+b x}{b-a x}\right)
Sol :
Let y=\tan ^{-1}\left(\frac{a+b x}{b-a x}\right)

y=\tan ^{-1}\left(\frac{\frac{a}{b}+\frac{b x}{b}}{\frac{b}{b}-\frac{a}{b} x}\right)

y=\tan ^{-1}\left(\frac{\frac{a}{b}+x}{1-\frac{a}{b} \cdot x}\right)

y=\tan ^{-1} \frac{a}{b}+\tan ^{-1} x

Differentiating with respect to x

\frac{d{y}}{dx}=\frac{1}{1+x^{2}}


(ii) \tan ^{-1}\left(\frac{\cos x+\sin x}{\cos x-\sin x}\right)
Sol :
Let y=\tan ^{-1}\left(\frac{\cos x+\sin x}{\cos x-\sin x}\right)

y=\tan ^{-1}\left(\frac{\frac{\cos x}{\cos x}+\frac{\sin x}{\cos x}}{\frac{\cos x}{\cos x}-\frac{\sin x}{\cos x}}\right)

y=\tan ^{-1}\left(\frac{\tan \frac{\pi}{4}+\tan x}{1-\tan\frac{\pi}{4}.\tan x}\right)

y=\tan ^{-1}\left(\tan \left(\frac{\pi}{4}+x\right)\right)

y=\frac{\pi}{4}+x

Differentiating with respect to x

\frac{dy}{dx}=1


(iii) \tan ^{-1}\left(\frac{a+b \tan x}{b-a \tan x}\right)
Sol :
Let y=\tan ^{-1}\left(\frac{a+b \tan x}{b-a \tan x}\right)

y=\tan ^{-1}\left(\frac{\frac{a}{b}+\frac{b+\tan x}{b}}{\frac{b}{b}-\frac{a}{b} \tan x}\right)

y=\tan ^{-1}\left(\frac{\frac{a}{b}+\tan x}{1-\frac{a}{b} \cdot \tan x}\right)

y=\tan ^{-1} \frac{a}{b}+\tan ^{-1}(\tan x)

y=\tan ^{-1} \frac{a}{b}+x

Differentiating with respect to x

\frac{d y}{dx}=1


(iv) \tan ^{-1}\left(\frac{3 a^{2} x-x^{3}}{a^{3}-3 a x^{2}}\right)
Sol :
Let y=\tan ^{-1}\left(\frac{3 a^{2} x-x^{3}}{a^{3}-3 a x^{2}}\right)

y=\tan ^{-1}\left[\frac{\frac{3 a^{2} x}{a^{3}}-\frac{x^{3}}{a^{3}}}{\frac{a^{3}}{a^{3}}-\frac{3 a x^{2}}{a^{3}}}\right]

y=\tan ^{-1}\left[\frac{3\left(\frac{x}{a}\right)-\left(\frac{x}{a}\right)^{3}}{1-3\left(\frac{x}{a}\right)^{2}}\right]

\left[\because \tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right)=3 \tan ^{-1} x \right]

y=3 \tan ^{-1}\left(\frac{x}{a}\right)

Differentiating with respect to x

\frac{d y}{d x}=3 \times \frac{1}{1+\left(\frac{x}{a}\right)^{2}} \times \frac{1}{a}

=\frac{3}{a\left(1+\frac{x^{2}}{a^{2}}\right)}

=\frac{3}{a\left(\frac{a^{2}+x^{2}}{a^{2}}\right)}

=\frac{3 a}{a^{2}+x^{2}}


(v) \tan ^{-1}\left(\frac{a \cos x-b \sin x}{b \cos x+a \sin x}\right)
Sol :
Let y=\tan ^{-1}\left(\frac{a \cos x-b \sin x}{b \cos x+a \sin x}\right)

y=\tan ^{-1}\left[\frac{\frac{a \cos x}{b \cos x}-\frac{b \sin x}{b \cos x}}{\frac{b \cos x}{b \cos x}+\frac{a \sin x}{b \cos x}}\right]

y=\tan ^{-1}\left(\frac{\frac{a}{b}-\tan x}{1+\frac{a}{b} \tan x}\right)

\left[\because\tan ^{-1}\left(\frac{x-y}{1+x y}\right)=\tan ^{-1} x-\tan^{-1}y \right]

y=\tan ^{-1} \frac{a}{b}-\tan ^{-1}(\tan x)

y=\tan ^{-1} \frac{a}{b}-x

Differentiating with respect to x

\frac{d{y}}{d x}=-1


(vi) \tan ^{-1}\left(\frac{2 a^{x}}{1-a^{2 x}}\right)
Sol :
Let y=\tan ^{-1}\left(\frac{2 a^{x}}{1-a^{2 x}}\right)

y=\tan ^{-1}\left(\frac{2 \cdot a^{x}}{1-\left(a^{2 x}\right)^{2}}\right]

2 \tan ^{-1} x=\tan ^{-1} \frac{2 x}{1-x^{2}}

y=2 \tan ^{-1}\left(a^{x}\right)

Differentiating with respect to x

\frac{d y}{d x}=2 \times \frac{1}{1+\left(a^{x}\right)^{2}} \times a^{x} \cdot \log a

=\frac{2 a^{x} \log a}{1+a^{2 x}}




Question 11

(i) यदि (If) y=\sec ^{-1}\left(\frac{x+1}{x-1}\right)+\sin ^{-1}\left(\frac{x-1}{x+1}\right) दिखाएँ कि (show that) \frac{d y}{d x}=0
Sol :
y=\sec ^{-1}\left(\frac{x+1}{x-1}\right)+\sin ^{-1}\left(\frac{x-1}{x+1}\right)

y=\cos ^{-1}\left(\frac{x-1}{x+1}\right)+\sin^{-1}\left(\frac{x-1}{x+1}\right)

y=\frac{\pi}{2}

Differentiating with respect to x

\frac{d y}{d x}=0


(ii) यदि (If) y=\tan ^{-1}(\cot x)+\cot ^{-1}(\tan x) दिखाएँ कि ( show that )\frac{d y}{d x}=-2
Sol :
y=\tan ^{-1}(\cot x)+\cot ^{-1}(\tan x)

y=\tan ^{-1}\left[\tan \left(\frac{\pi}{2}-x\right)\right]+\cot^{-1}\left[\cot \left(\frac{\pi}{2}-x\right)\right]

y=\frac{\pi}{2}-x+\frac{\pi}{2}-x

y=𝜋-2x

Differentiating with respect to x

\frac{d y}{d x}=-2


(iii) यदि (If) y=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)+\sec ^{-1}\left(\frac{1+x^{2}}{1-x^{2}}\right) दिखाएँ कि (show that) \frac{d y}{d x}=\frac{4}{1+x^{2}}
Sol :
Let y=y=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)+\sec ^{-1}\left(\frac{1+x^{2}}{1-x^{2}}\right)

y=2 \tan ^{-1} x+\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)

y=2 \tan ^{-1} x+2 \tan ^{-1} x

Differentiating with respect to x

\frac{d y}{dx}=4 \times \frac{1}{1+x^{2}}=\frac{4}{1+x^{2}}


(iv) यदि (If) y=\sin \left\{2 \tan ^{-1} \sqrt{\left(\frac{1-x}{1+x}\right)}\right\} show that \frac{d y}{d x}=\frac{-x}{\sqrt{1-x^{2}}}
Sol :
y=\sin \left\{2 \tan ^{-1} \sqrt{\left(\frac{1-x}{1+x}\right)}\right\}

Put x=cosθ
⇒θ=cos-1x

y=\sin \left\{2 \tan ^{-1} \sqrt{\frac{1-\cos \theta}{1+\cos \theta}}\right\}

y=\sin \left[2 \tan ^{-1} \sqrt{\frac{2 \sin ^{2} \frac{\theta}{2}}{2 \cos ^{2} \frac{\theta}{2}}}\right]

y=\sin \left\{2 \tan ^{-1}\left(\tan \frac{\theta}{2}\right)\right\}

y=\sin\left\{2 \times \frac{\theta}{2}\right\}

y=sin θ

y=\sin \left(\cos ^{-1} x\right)

Differentiating with respect to x

\frac{d y}{dx}=\cos \left(\cos^{-1} x\right) \times \frac{-1}{\sqrt{1-x^{2}}}

=\frac{-x}{\sqrt{1-x^{2}}}


(v) यदि (If) y=\cos ^{-1}(2 x)+2 \cos ^{-1} \sqrt{1-4 x^{2}} दिखाएँ कि (show that) \frac{d y}{d x}=\frac{2}{\sqrt{1-4 x^{2}}}
Sol :
y=\cos ^{-1}(2 x)+2 \cos ^{-1} \sqrt{1-4 x^{2}}

y=\cos ^{-1}(2x)+2 \cos ^{-1} \sqrt{1-(2 x)^{2}}

y=\cos^{-1}(2 x)+2 \cdot \sin ^{-1} 2 x

\left[\because\cos^{-1} \sqrt{1-x^{2}}=\sin ^{-1} x\right]

y=\cos ^{-1}(2 x)+\sin ^{-1}(2 x)+\sin^{-1}(2 x)

y=\frac{\pi}{2}+\sin ^{-1}(2 x)

Differentiating with respect to x

\frac{dy}{dx}=\frac{1}{\sqrt{1-(2 x)^{2}}} \times 2

=\frac{2}{\sqrt{1-4 x^{2}}}


(vi) यदि (If) y=\sin ^{2}\left(\cot ^{-1} \sqrt{\frac{1+x}{1-x}}\right) दिखाएँ कि (prove that ) \frac{d y}{d x}=-\frac{1}{2}
Sol :
y=\sin^{2}\left(\cot ^{-1} \sqrt{\frac{1+x}{1-x}}\right)

Put x=cos2θ

y=\sin ^{2}\left[\cot ^{-1} \sqrt{\frac{1+\cos 2\theta}{1-\cos 2 \theta}}\right]

y=\sin ^{2}\left[\cot^{-1} \sqrt{\frac{2\cos^2 \theta}{2 \sin^{2}\theta}}\right]

y=\sin ^{2}\left[\cos ^{-1}(\cot \theta)\right]

y=\sin ^{2} \theta

Differentiating with respect to θ

\frac{d x}{d \theta}=-\sin 2 \theta \times 2

\frac{d \theta}{d x}=-\frac{1}{2 \sin 2 \theta}


Differentiating with respect to x

\frac{d y}{d x}=\frac{d\left(\sin ^{2} \theta\right)}{d(\sin \theta)} \times \frac{d(\sin \theta)}{d \theta} \times \frac{d \theta}{d x}

=2 \sin \theta \cdot \cos \theta \cdot\left(-\frac{1}{2 \sin 2 \theta}\right)

=\sin 2 \theta \cdot\left(\frac{-1}{2 \sin 2\theta}\right)

\frac{d y}{d x}=-\frac{1}{2}


(vii) यदि(If) y=\sin ^{-1}\left(\frac{1}{\sqrt{1+x^{2}}}\right)+\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right) निकाले (find) \frac{d y}{d x}
Sol :
y=\sin ^{-1}\left(\frac{1}{\sqrt{1+x^{2}}}\right)+\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)

Put x=tan θ
θ=tan-1x

y=\sin ^{-1}\left(\frac{1}{\sqrt{1+\tan ^{2} \theta}}\right)+\tan ^{-1}\left(\frac{\sqrt{1+\tan ^{2} \theta}-1}{\tan \theta}\right)

y=\sin ^{-1}\left(\frac{1}{\sec \theta}\right)+\tan ^{-1}\left(\frac{\sec \theta-1}{\tan \theta}\right)

y=\sin ^{-1}(\cos \theta)+\tan ^{-1}\left(\frac{\frac{1}{\cos \theta}-1}{\frac{\sin \theta}{\cos }}\right)

y=\sin ^{-1}\left[\sin \left(\frac{\pi}{2}-\theta\right)\right]+\tan ^{-1}\left(\frac{\frac{1-\cos \theta}{\cos \theta}}{\frac{\sin \theta}{\cos \theta}}\right)

y=\frac{x}{2}-\sigma+\tan ^{-1}\left(\frac{2\sin^2 \frac{\theta}{2}}{2 \sin \frac{\theta}{2}\cos \frac{\theta}{2}}\right)

y=\frac{\pi}{2}-\theta+\tan ^{-1}\left(\tan \frac{\theta}{2}\right)

y=\frac{\pi}{2}-\theta+\frac{\theta}{2}

y=\frac{\pi}{2}-\frac{\theta}{2}

y=\frac{\pi}{2}-\frac{1}{2} \tan ^{-1} x

Differentiating with respect to x

\frac{d y}{d x}=0-\frac{1}{2} \times \frac{1}{1+x^{2}}

=\frac{-1}{2\left(1+x^{2}\right)}


(viii) यदि(If) y=\cos ^{-1}\left[x^{4 / 3}-\sqrt{\left(1-x^{2}\right)\left(1-x^{2 / 3}\right)}\right], 0 \leq x \leq 1 दिखाएँ कि(show that) \frac{d y}{d x}=-\frac{1}{\sqrt{1+x^{2}}}-\frac{1}{3 x^{2 / 3} \sqrt{1-x^{2 / 3}}}
Sol :
y=\cos ^{-1}\left[x^{4 / 3}-\sqrt{\left(1-x^{2}\right)\left(1-x^{2 / 3}\right)}\right]

y=\cos ^{-1}\left[x \cdot x^{\frac{1}{3}}-\sqrt{\left(1-x^{2}\right)\left(1-\left(x^{\frac{1}{3}}\right)^{2}\right]}\right]

y=\cos ^{-1} x+\cos ^{-1}\left(x^{\frac{1}{3}}\right)

Differentiating with respect to x

\frac{d y}{d x}=\frac{-1}{\sqrt{1-x^{2}}}-\frac{1}{\sqrt{1-\left(x^{\frac{1}{3}}\right)^{2}}} \times \frac{1}{3} \cdot x^{-\frac{2}{3}}

=\frac{-1}{\sqrt{1-x^{2}}}-\frac{1}{3 x^{2 / 3} \sqrt{1-x^{2 / 3}}}

No comments:

Post a Comment

Contact Form

Name

Email *

Message *