Processing math: 100%

KC Sinha Mathematics Solution Class 12 Chapter 11 अवकलन (Differentiation) Exercise 11.3 (Q7-Q10)

Exercise 11.3






Question 7

यदि (If) y=x+\frac{1}{x}_{+\frac{1}{x}_{+\frac{1}{x}_+\dots \text{ to } \infty}} सिद्ध करें कि( prove that) \left(x^{2}-y^{2}+3\right) \frac{d y}{d x}=1
Sol :
y=x+\frac{1}{x}_{+\frac{1}{x}_{+\frac{1}{x}_+\dots \text{ to } \infty}}

y=x+\frac{1}{y}

Differentiating with respect to x

\frac{d y}{d x}=1-\frac{1}{y^{2}} \cdot \frac{d y}{d x}

\frac{d y}{dx}+\frac{1}{y^{2}} \frac{d y}{d x}=1

\left[1+\frac{1}{y^{2}}\right] \frac{d y}{d x}=1

\left[y^{2}-2 \cdot y \cdot \frac{1}{y}+\frac{1}{y^{2}}-y^{2}+3\right] \frac{d y}{d x}=1

\left[\left(y-\frac{1}{y}\right)^{2}-y^{2}+3\right] \frac{d y}{d x}=1

\left[x^{2}-y^{2}+3\right] \frac{d y}{d x}=1


Question 8

यदि (If) y=\sqrt{x+\sqrt{x+\sqrt{x+\ldots . \text { to } \infty}}} सिद्ध करे कि (prove that) \frac{d y}{d x}=\frac{1}{2 y-1}
Sol :
y=\sqrt{x+\sqrt{x+\sqrt{x+\ldots . \text { to } \infty}}}

y=\sqrt{x+y}

Squaring both sides

y^{2}=x+y

Differentiating with respect to x

2 y.\frac{d y}{dx}=1+\frac{d y}{d x}

2 y \frac{d y}{d x}-\frac{d y}{d x}=1

(2 y-1) \frac{d y}{d x}=1

\frac{d y}{d x}=\frac{1}{2 y-1}


Question 9

यदि (If) \sqrt{1-x^{2}}+\sqrt{1-y^{2}}=a(x-y) सिद्ध करें कि (prove that) \frac{d y}{d x}=\sqrt{\frac{1-y^{2}}{1-x^{2}}}
Sol :
\sqrt{1-x^{2}}+\sqrt{1-y^{2}}=a(x-y)

Differentiating with respect to x

\frac{1}{2 \sqrt{1-x^{2}}} \times(-2 x)+\frac{1}{2 \sqrt{1-y^{2}}} \times(-2 y) \cdot \frac{d y}{d x}=a\left[1-\frac{dy}{d x}\right]

\frac{-x}{\sqrt{1-x^{2}}}-\frac{y}{\sqrt{1-y^{2}}} \frac{d y}{d x}=a-\frac{a d y}{d x}

a \frac{d y}{d x}-\frac{y}{\sqrt{1-y^{2}}} \frac{d y}{d x}=a+\frac{x}{\sqrt{1-x^{2}}}

\left[a-\frac{y}{\sqrt{1-y^{2}}}\right] \frac{d y}{d x}=a+\frac{x}{\sqrt{1-x^{2}}}

\left[\frac{\sqrt{1-x^{2}}+\sqrt{1-y^{2}}}{x-y}-\frac{y}{\sqrt{1-y^{2}}}\right] \frac{d y}{d x}=\frac{\sqrt{1-x^{2}}+\sqrt{1-y^{2}}}{x-y}+\frac{x}{\sqrt{1-x^{2}}}

\left[\frac{\sqrt{1-x^{2}} \sqrt{1-y^{2}}+1-y^{2}-x y+y^{2}}{(x-y) \sqrt{1-y^{2}}}\right] \frac{d y}{d x}=\frac{1-x^{2}+\sqrt{1-x^{2}} \sqrt{1-y^{2}}+x^{2}-xy}{(x-y) \sqrt{1-x^{2}}}

\left[\frac{\sqrt{1-x^{2}} \sqrt{1-y^{2}}-x y+1}{\sqrt{1-y^{2}}}\right] \frac{d y}{d x}=\frac{\sqrt{1-x^{2}} \sqrt{1-y^{2}}-x y+1}{\sqrt{1-x^{2}}}

\frac{dy}{d x}=\frac{\sqrt{1-y^{2}}}{\sqrt{1-x^{2}}}=\sqrt{\frac{1-y^{2}}{1-x^{2}}}


Question 10

यदि (If) y=x+\frac{1}{x} सिद्ध करें कि (prove that) x \frac{d y}{d x}+y=2 x x \frac{d y}{d x}+y=2 x
Sol :
y=x+\frac{1}{x}

y=\frac{x^{2}+1}{x}

x y=x^{2}+1

Differentiating with respect to x

1 \cdot y+x \frac{d y}{d x}=2 x+0

x \frac{d y}{d x}+y=2 x


No comments:

Post a Comment

Contact Form

Name

Email *

Message *