KC Sinha Mathematics Solution Class 12 Chapter 6 सारणिक (Determinants) Exercise 6.2 (Q10-Q12)

Exercise 6.2







Question 10

t का मान निकाले जिसके लिए बिन्दुएँ (1,-1) , (3,-3) तथा (t,2)  संरेख है
[Find the value of t for which the points (1,-1) , (3,-3) and (t,2) are collinear ]

Sol :

माना बिन्दुएँ (1,-1) , (3,-3) तथा (t,2) संरेख है

$\frac{1}{2}\left|\begin{array}{ccc}1 & -1 & 1 \\ 3 & -3 & 1 \\ t & 2 & 1\end{array}\right|=0$

R1→R1-R2 , R2→R2-R3

$\left|\begin{array}{ccc}-2 & 2 & 0 \\ 3-t & -5 & 0 \\ t & 2 & 1\end{array}\right|=0$

Expanding along C3

$1\left|\begin{array}{cc}-2 & 2 \\ 3-t & -5\end{array}\right|=0$
⇒10-2(3-t)=0
⇒-2(3-t)=-10
⇒3-t=5
⇒-t=5-3
⇒-t=2
⇒t=-2

Question 11

सारणिक का प्रयोग कर (3,1) तथा (9,3) को मिलानेवाली रेखा का समीकरण निकालें ।
[Find the equation of the line joining (3,1) and (9,3) using determinants.]
Sol :
<to be added>

Diagram2

$\frac{1}{2}\left|\begin{array}{lll}3 & 1 & 1 \\ 9 & 3 & 1 \\ x & y & 1\end{array}\right|=0$

$R_{1} \rightarrow R_{1}-\frac{1}{3} R_{2}$

$\left|\begin{array}{ccc}0 & 0 & \frac{2}{3} \\ 9 & 3 & 1 \\ x & y & 1\end{array}\right|=0$

Expanding along R1

$\frac{2}{3}\left|\begin{array}{ll}9 & 3 \\ x & y\end{array}\right|=0$

⇒9y-3x=0

⇒-3x+9y=0

⇒-3(x-3y)=0

⇒x-3y=0

Question 12

सारणिक का प्रयोग कर बिन्दुओं A(1,3) तथा B(0,0) से गुजरती हुई रेखा का समीकरण निकालें तथा k का मान निकाले यदि D(k, 0) एक ऐसा बिन्दु है ताकि त्रिभुज ABD का क्षेत्रफल 3 वर्ग इकाई है ।

[Find the equation of the line joining A(1,3) and B(0,0) using determinants and find k if D(k, 0) is a point such that area of triangle ABD is 3 sq. units.]
Sol :
<to be added>

Diagram

<to be added>


$\frac{1}{2}\left|\begin{array}{ccc}1 & 3 & 1 \\ 0 & 0 & 1 \\ 2 & y & 1\end{array}\right|=0$

Expanding along R2
$-1\left|\begin{array}{ll}1 & 3 \\ x & y\end{array}\right|=0$

⇒-(y-3x)=0
⇒3x-y=0

Diagram


<to be added>

$\frac{1}{2}\left|\begin{array}{ccc}1 & 3 & 1 \\ 0 & 0 & 1 \\ k & 0 & 1\end{array}\right|=\pm 3$

$\left|\begin{array}{lll}1 & 3 & 1 \\ 0 & 0 & 1 \\ k & 0 & 1\end{array}\right|=\pm 6$

Expanding along R2

$-1\left|\begin{array}{ll}1 & 3 \\ k & 0\end{array}\right|=\pm 6$

⇒-(0-3k)=±6

⇒3k=±6

⇒k=±2

1 comment:

Home

Contact Form

Name

Email *

Message *