Find the inverse of the following matrices (i) $\left[\begin{array}{rr}2 & 5 \\ -3 & 1\end{array}\right]$
Sol :
$A=\left[\begin{array}{ll}2 & 5 \\ -3 & 1\end{array}\right]$
(ii) $\left[\begin{array}{rr}2 & -2 \\ 1 & 3\end{array}\right]$
Sol :
(iii) $\left[\begin{array}{rr}a+i b & c+i d \\ -c+i d & a-i b\end{array}\right]$ where
$a^{2}+b^{2}+c^{2}+d^{2}=1$
Sol :
$A=\left[\begin{array}{rr}a+i b & c+i d \\ -c+i d & a-i b\end{array}\right]$
|A|=(a+ib)(a-ib)-(-c+id)(c+id)
$=a^{2}-1^{2} b^{2}+c^{2}-i^{2} d^{2}$
$=a^{2}+b^{2}+c^{2}+d^{2}$
=1≠0
<to be added>
$A_{11}=a-i b$ , $A_{12}=-(-c+i d)$=c-id
$A_{21}=-(c+i d)$
=-c-id
$A_{22}=a+ib$
$ad{j} A=\left[\begin{array}{cc}a-ib & c-i d \\ -c-i d & a+i b\end{array}\right]$
$=\left[\begin{array}{cc}a-i b & -c-i d \\ c-i d & a+i b\end{array}\right]$
$A^{-1}=\frac{1}{(A)} \cdot a d j A$
$=\frac{1}{1}\left[\begin{array}{cc}a-i b & -c-i d \\ c-i d & a+2 b\end{array}\right]$
$A^{-1}=\left[\begin{array}{cc}a-i b & -c-i d \\ c-i d & a+i b\end{array}\right]$
(iv) $\left[\begin{array}{cc}1 & \tan x \\ -\tan x & 1\end{array}\right]$ Sol :
(v) $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. जहाँ (where) ad-bc≠0 Sol :
Question no 9 ka 3 sol
ReplyDeleteManoj mathematics
ReplyDeleteRoshan
ReplyDelete