KC Sinha Mathematics Solution Class 12 Chapter 7 वर्ग आव्यूह का सहखंडज और प्रतिलोम (adjoint and inverse of matrix) Exercise 7.1 (Q7-Q10)
 
Exercise 7.1 
   (Q1-Q3) (Q4-Q6) (Q7-Q10) 
  
Question 7 (i)  If $A=\left[\begin{array}{rr}2 & 3 \\ 5 & -2\end{array}\right]$ show that
$A^{-1}=\frac{1}{19} A$
Sol :
$|A|=\left|\begin{array}{cc}2 & 3 \\ 5 & -2\end{array}\right|$
=-4-15
=-19≠0
<to be added>
$A_{11}=-2, A_{12}=-5$
$A_{21}=-3, A_{22}=2$
$a d j A=\left[\begin{array}{cc}-2 & -5 \\ -3 & 2\end{array}\right]^{\prime}$
$=\left[\begin{array}{cc}-2 & -3 \\ -5 & 2\end{array}\right]$
$A^{-1}=\frac{1}{|A|} \cdot a d j A$
$=\frac{1}{-19}\left[\begin{array}{cc}-2 & -3 \\ -5 & 2\end{array}\right]$
$A^{-1}=\frac{1}{19}\left[\begin{array}{cc}2 & 3 \\ 5 & -2\end{array}\right]$
$\therefore A^{-1}=\frac{1}{19} \cdot A$
 
(ii)  यदि (If) $A=\left[\begin{array}{rr}2 & 5 \\ 1 & -2\end{array}\right]$. दिखाएँ कि (show that) $A^{-1}=\frac{1}{9} A$
Sol :
(iii)  If $A=\left[\begin{array}{rr}2 & -3 \\ -4 & 7\end{array}\right]$ show that $2 \mathrm{A}^{-1}=9 \mathrm{I}-\mathrm{A}$
Question 8 
(i)  यदि (If) $A=\left[\begin{array}{ll}3 & 1 \\ 4 & 0\end{array}\right], B=\left[\begin{array}{ll}4 & 0 \\ 2 & 5\end{array}\right]$, सत्यापित करें कि ( verify that)(ii)  यदि (If) $\mathrm{A}=\left[\begin{array}{ll}3 & 2 \\ 7 & 5\end{array}\right], \mathrm{B}=\left[\begin{array}{ll}6 & 7 \\ 8 & 9\end{array}\right]$, सत्यापित करें कि (verify that)
(iii)  If $A=\left[\begin{array}{rr}2 & -3 \\ 4 & 6\end{array}\right]$ verify that(a)  $\operatorname{adj} A^{\prime}=(\operatorname{adj} A)^{\prime}$(b)  $(\operatorname{adj} A)^{-1}=\operatorname{adj}\left(A^{-1}\right)$(iv)  If $A=\left[\begin{array}{rr}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ verify that $\left(A^{\prime}\right)^{-1}=\left(A^{-1}\right)^{\prime}$(v)  If $A=\left[\begin{array}{rr}1 & -1 \\ 0 & 3\end{array}\right]$ and $B=\left[\begin{array}{rr}2 & 4 \\ -3 & 0\end{array}\right]$ verify that $\operatorname{adj}(A B)=(\operatorname{adj} B)(\operatorname{adj} A)$
Question 9 
(i)  If $A=\left[\begin{array}{ccc}\cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]$ verify that(ii)  If $f(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$ verify that(iii)  If $A=\left[\begin{array}{rrr}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$ verify that(iv)  If $A=\left[\begin{array}{rrr}1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0\end{array}\right]$ show thatQuestion 10 
यदि (If) $A^{-1}=\left[\begin{array}{rrr}3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right]$ and $B=\left[\begin{array}{rrr}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right]$
निकाले (Find) $(A B)^{-1}$
Sol :
 
No comments:
Post a Comment