Processing math: 0%

KC Sinha Mathematics Solution Class 12 Chapter 5 आव्यूह ( Matrices ) Exercise 5.4



Exercise 5.4

[using elementary transformations (operations), find the inverse of the following matrices, if it exist]
Question 1
\begin{bmatrix}1&3\\2&7\end{bmatrix}
Sol :
A=\begin{bmatrix}1&3\\2&7\end{bmatrix}

A=IA

\begin{bmatrix}1&3\\2&7\end{bmatrix}=\begin{bmatrix}1&0\\0&1\end{bmatrix}A

R2→R2-2R1

\begin{bmatrix}1&3\\0&1\end{bmatrix}=\begin{bmatrix}1&0\\-2&1\end{bmatrix}A

R1→R1-3R2

\begin{bmatrix}1&0\\0&1\end{bmatrix}=\begin{bmatrix}7&-3\\-2&1\end{bmatrix}A

A^{-1}=\begin{bmatrix}7&-3\\-2&1\end{bmatrix}


Question 2
\begin{bmatrix}2&1\\7&4\end{bmatrix}
Sol :
Let A=\begin{bmatrix}2&1\\7&4\end{bmatrix}

A=IA

\begin{bmatrix}2&1\\7&4\end{bmatrix}=\begin{bmatrix}1&0\\0&1\end{bmatrix}A

R1↔R2

\begin{bmatrix}7&4\\2&1\end{bmatrix}=\begin{bmatrix}0&1\\1&0\end{bmatrix}A

R1→R1-3R2

\begin{bmatrix}1&1\\2&1\end{bmatrix}=\begin{bmatrix}-3&1\\1&0\end{bmatrix}A

R2→R2-2R1

\begin{bmatrix}1&1\\0&-1\end{bmatrix}=\begin{bmatrix}-3&1\\7&-2\end{bmatrix}A

R1→-1R2

\begin{bmatrix}1&1\\0&1\end{bmatrix}=\begin{bmatrix}-3&1\\-7&2\end{bmatrix}A

R1→R1-R2

\begin{bmatrix}1&1\\0&-1\end{bmatrix}=\begin{bmatrix}-3&1\\7&-2\end{bmatrix}A

R2→-1R2

\begin{bmatrix}1&1\\0&1\end{bmatrix}=\begin{bmatrix}-3&1\\-7&2\end{bmatrix}A

R1→R1-R2

\begin{bmatrix}1&1\\0&1\end{bmatrix}=\begin{bmatrix}4&-1\\-7&2\end{bmatrix}A

A^{-1}=\begin{bmatrix}4&-1\\-7&2\end{bmatrix}


Question 3
\begin{bmatrix}2&1\\1&1\end{bmatrix}
Sol :
Let A=\begin{bmatrix}2&1\\1&1\end{bmatrix}

A=IA

\begin{bmatrix}2&1\\1&1\end{bmatrix}=\begin{bmatrix}1&0\\0&1\end{bmatrix}A

R1→R1-R2

\begin{bmatrix}1&0\\1&1\end{bmatrix}=\begin{bmatrix}1&-1\\0&1\end{bmatrix}A

R2→R2-R1

\begin{bmatrix}1&0\\1&1\end{bmatrix}=\begin{bmatrix}1&-1\\-1&1\end{bmatrix}A

A^{-1}=\begin{bmatrix}1&-1\\-1&2\end{bmatrix}

Question 4
\begin{bmatrix}\dfrac{1}{5}&\dfrac{2}{5}\\\dfrac{2}{5}&-\dfrac{1}{5}\end{bmatrix}
Sol :
A=\begin{bmatrix}\dfrac{1}{5}&\dfrac{2}{5}\\\dfrac{2}{5}&-\dfrac{1}{5}\end{bmatrix}

A=IA

\begin{bmatrix}\dfrac{1}{5}&\dfrac{2}{5}\\\dfrac{2}{5}&-\dfrac{1}{5}\end{bmatrix}=\begin{bmatrix}1&0\\0&1\end{bmatrix}A

R1→5R1


\begin{bmatrix}1&2\\ \dfrac{2}{5}&-\dfrac{1}{5}\end{bmatrix}=\begin{bmatrix}5&0\\0&1\end{bmatrix}A

\begin{bmatrix}1&2\\ 0&-1\end{bmatrix}=\begin{bmatrix}5&0\\-2&1\end{bmatrix}A

R2→-R2

\begin{bmatrix}1&2\\ 0&1\end{bmatrix}=\begin{bmatrix}5&0\\2&-1\end{bmatrix}A

R1→R1-2R2

\begin{bmatrix}1&0\\ 0&1\end{bmatrix}=\begin{bmatrix}1&2\\2&-1\end{bmatrix}A

A^{-1}=\begin{bmatrix}1&2\\2&-1\end{bmatrix}





Question 5
\left[\begin{array}{rr}1 & 2 \\ 2 & -1\end{array}\right]
Sol :
A=\left[\begin{array}{cc}1 & 2 \\ 2 & -1\end{array}\right]

A=IA

\left[\begin{array}{cc}1 & 2 \\ 2 & -1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]A

 R2→R2-2R1

\left[\begin{array}{cc}1 & 2 \\ 0 & -5\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right]A

\left[\begin{array}{cc}1 & 2 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ \frac{2}{5} & \frac{-1}{5}\end{array}\right]A

 R1→R1-2R2

\left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}\frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & -\frac{1}{5}\end{array}\right]A

A^{-1}=\left[\begin{array}{cc}\frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & -\frac{1}{5}\end{array}\right]




2 comments:

Contact Form

Name

Email *

Message *