Processing math: 100%

KC Sinha Mathematics Solution Class 12 Chapter 5 आव्यूह ( Matrices ) Exercise 5.4 (Q11-Q15)



Exercise 5.4

Question 11

\left[\begin{array}{cr}2 & -3 \\ -1 & 2\end{array}\right]
Sol :




Question 12

\left[\begin{array}{cc}10 & -2 \\ -5 & 1\end{array}\right]
Sol :





Question 13
\left[\begin{array}{ll}3 & 9 \\ 1 & 3\end{array}\right]
Sol :
A=\left[\begin{array}{ll}3 & 9 \\ 1 & 3\end{array}\right]

A=IA

\left[\begin{array}{ll}3 & 9 \\ 1 & 3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] A

R1→R1-3R2

\left[\begin{array}{ll}0 & 0 \\ 1 & 3\end{array}\right]=\left[\begin{array}{cc}1 & -3 \\ 0 & 1\end{array}\right] A

∴ A-1 का अस्तित्व नही हैं


Question 14
\left[\begin{array}{rrr}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]
Sol :
A=\left[\begin{array}{rrr}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]

A=IA

\left[\begin{array}{ccc}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]A

R1→R1-R

\left[\begin{array}{ccc}5 & 1 & 0 \\ 2 & 0 & -1 \\ 0 & 1 & 3\end{array}\right]=\left[\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]

R1→R1-2R

\left[\begin{array}{ccc}1 & 1 & 2 \\ 2 & 0 & -1 \\ 0 & 1 & 3\end{array}\right]=\left[\begin{array}{ccc}-2 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]A

R2→R2-2R1

\left[\begin{array}{ccc}1 & 1 & 2 \\ 0 & -2 & -5 \\ 0 & 1 & 3\end{array}\right]=\left[\begin{array}{ccc}-2 & 1 & 0 \\ 5 & -2 & 0 \\ 0 & 0 & 1\end{array}\right]a

R_{3} \rightarrow R_{3}+\frac{1}{2} R_{2}

\left[\begin{array}{ccc}1 & 1 & 2 \\ 0 & -2 & -5 \\ 0 & 0 & \frac{1}{2}\end{array}\right]=\left[\begin{array}{ccc}-2 & 1 & 0 \\ 5 & -2 & 0 \\ \frac{5}{2} & -1 & 1\end{array}\right]A

R3→2R3

\left[\begin{array}{ccc}1 & 1 & 2 \\ 0 & -2 & -5 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}-2 & 1 & 0 \\ 5 & -2 & 0 \\ 5 & -2 & 20\end{array}\right]A

R2→R2+5R3

\left[\begin{array}{ccc}1 & 1 & 2 \\ 0 & -2 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}-2 & 1 & 0 \\ 30 & -12 & 10 \\ 5 & -2 & 2\end{array}\right]A

R1→R1-2R

\left[\begin{array}{ccc}1 & 1 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}-12 & 5 & -4 \\ 30 & -12 & 10 \\ 5 & -2 & 2\end{array}\right]A

R_{1} \rightarrow R_{1}+\frac{1}{2} R_{2}

\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}3 & -1 & 1 \\ 30 & -12 & 10 \\ 5 & -2 & 2\end{array}\right]A

R_{2} \rightarrow-\frac{1}{2} R_{2}

\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{cccc}3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right] A

\therefore A^{-1}=\left[\begin{array}{ccc}3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right]


Question 15
Using elementary transformations (operations) , find the inverse of the following matrices , if it exist
\left[\begin{array}{rrr}2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2\end{array}\right]
Sol :
Let A=\left[\begin{array}{ccc}2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2\end{array}\right]

A=IA

\left[\begin{array}{ccc}2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]


\left[\begin{array}{ccc}3 & -2 & 2 \\ 2 & 2 & 3 \\ 2 & -3 & 3\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]A


\left[\begin{array}{rrr}1 & -4 & -1 \\ 2 & 2 & 3 \\ 2 & -3 & 3\end{array}\right]=\left[\begin{array}{rrr}0 & -1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]A

R_{1}\leftrightarrow R_{3}

\left[\begin{array}{rrr}3 & -2 & 2 \\ 2 & 2 & 3 \\ 2 & -3 & 3\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]A

R_{1} \rightarrow R_{1}-R_{2}

\left[\begin{array}{rrr}1 & -4 & -1 \\ 2 & 2 & 3 \\ 2 & -3 & 3\end{array}\right]=\left[\begin{array}{rrr}0 & -1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]A

R_{2} \rightarrow R_{2}-R_{3}

\left[\begin{array}{ccc}1 & -4 & -1 \\ 0 & 5 & 0 \\ 2 & -3 & 3\end{array}\right]=\left[\begin{array}{ccc}0 & -1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]A

R_{3} \rightarrow R_{3}-2 R_{1}

\left[\begin{array}{rrr}1 & -4 & -1 \\ 0 & 5 & 0 \\ 0 & 5 & 5\end{array}\right]=\left[\begin{array}{rrr}0 & -1 & 1 \\ -1 & 1 & 0 \\ 1 & 2 & -2\end{array}\right]A

R_{3} \rightarrow R_{3}-R_{2}

\left[\begin{array}{ccc}1 & -4 & -1 \\ 0 & 5 & 0 \\ 0 & 0 & 5\end{array}\right]=\left[\begin{array}{rrr}0 & -1 & 1 \\ -1 & 1 & 0 \\ 2 & 1 & -2\end{array}\right]A

R_{3} \rightarrow \frac{1}{5} R_{3}

\left[\begin{array}{rrr}1 & -4 & -1 \\ 0 & 5 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{rrr}0 & -1 & 1 \\ -1 & 1 & 0 \\ \frac{2}{5} & \frac{1}{5} & -\frac{2}{5}\end{array}\right]A

R_{1} \rightarrow R_{1}+R_{3}

\left[\begin{array}{rrrr}1 & -4 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{rrr}\frac{2}{5} & -\frac{4}{5} & \frac{3}{5} \\ -1 & 1 & 0 \\ \frac{2}{5} & \frac{1}{5} & -\frac{2}{5}\end{array}\right]A

R_{2} \rightarrow \frac{1}{5} R_{2}

\left[\begin{array}{ccc}1 & -4 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}\frac{2}{5} & -\frac{4}{5} & \frac{3}{5} \\ -\frac{1}{5} & \frac{1}{5} & 0 \\ \frac{2}{5} & \frac{1}{5} & -\frac{2}{8}\end{array}\right]A

R_1 \longrightarrow R_{1}+4 R_{2}

\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]=\left[\begin{array}{ccc}-\frac{2}{5} & 0 & \frac{3}{5} \\ -\frac{1}{5} & \frac{1}{5} & 0 \\ \frac{2}{5} & \frac{1}{5} & -\frac{2}{5}\end{array}\right]

\theta^{-1}=\left[\begin{array}{rrr}-\frac{2}{5} & 0 & \frac{3}{5} \\ -\frac{1}{5} & \frac{1}{5} & 0 \\ \frac{2}{5} & \frac{1}{5} & -\frac{2}{5}\end{array}\right]


No comments:

Post a Comment

Contact Form

Name

Email *

Message *